We investigated the effects of cell therapy on local mechanical dyssynchrony (LMD) in patients with nonischemic dilated cardiomyopathy (NICM). We analyzed electromechanical data of 30 NICM patients undergoing CD34 cell transplantation. All patients underwent bone marrow stimulation; CD34 cells were collected by apheresis and injected transendocardially. At baseline and at 6 months after therapy, we performed electromechanical mapping and measured unipolar voltage (UV) and LMD at cell injection sites. LMD was defined as a temporal difference between global and segmental peak systolic displacement normalized to the average duration of the RR interval. Favorable clinical response was defined as increase in the left ventricular ejection fraction (LVEF) ≥5% between baseline and 6 months. Using paired electromechanical point-by-point analysis, we were able to identify 233 sites of CD34 cell injections in 30 patients. We found no overall differences in local UV between baseline and 6 months (10.7 ± 4.1 mV vs 10.0 ± 3.6 mV, = 0.42). In contrast, LMD decreased significantly (17 ± 17% at baseline vs 13 ± 12% at 6 months, = 0.00007). Favorable clinical response at 6 months was found in 19 (63%) patients (group A), and 11 (37%) patients did not respond to cell therapy (group B). At baseline, the two groups did not differ in age, gender, LVEF, or N terminal-pro brain natriuretic peptide (NT-proBNP) levels. Similarly, we found no differences in baseline UV (9.5 ± 2.9 mV in group A vs 8.6 ± 2.4 mV in group B, = 0.41) or LMD at cell injection sites (17 ± 19% vs 16 ± 14%, = 0.64). In contrast, at 6 months, we found higher UV in group A (10.0 ± 3.1 mV vs 7.4 ± 1.9 mV in group B, = 0.04). Furthermore, when compared with group B, patients in group A displayed a significantly lower LMD (11 ± 12% vs 16 ± 10%, = 0.002). Thus, it appears that favorable clinical effects of cell therapy in NICM patients may be associated with a decrease of LMD at cell injection sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949703 | PMC |
http://dx.doi.org/10.1177/09636897221080384 | DOI Listing |
Lung Cancer
January 2025
Dept. of Medical Oncology, Princess Margaret Cancer Center, Toronto, ON, Canada.
Background: Manual extraction of real-world clinical data for research can be time-consuming and prone to error. We assessed the feasibility of using natural language processing (NLP), an AI technique, to automate data extraction for patients with advanced lung cancer (aLC). We assessed the external validity of our NLP-extracted data by comparing our findings to those reported in the literature.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nursing and Podiatry, University of Malaga, Malaga, Spain.
Cellular therapy is a promising treatment option for Peripheral Arterial Disease (PAD). Different cell types can be used to regenerate and repair tissues affected by PAD. Many studies have proposed the use of stem cells, such as mesenchymal stem cells, or even mononuclear cells isolated from peripheral blood or bone marrow, to treat PAD.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China.
This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.
View Article and Find Full Text PDFScience
January 2025
NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!