Discovery and Biomimetic Synthesis of a Polycyclic Polymethylated Phloroglucinol Collection from .

J Org Chem

Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.

Published: April 2022

Inspired by a previously reported biomimetic synthesis study, four new naturally occurring phloroglucinol trimers with unusual 6/5/5/6/6/6-fused hexacyclic ring systems, along with two known analogues ( and ) and two known biogenetically related dimers ( and ), were isolated from . Their structures and absolute configurations were unambiguously elucidated by spectroscopic analysis, X-ray diffraction, and electronic circular dichroism calculation. By mimicking two potentially alternative biosynthetic pathways, the first asymmetric syntheses of and the racemic syntheses of and were achieved in only five to six steps without the need for protecting groups. Furthermore, phloroglucinol dimers and exhibited significant in vitro antiviral activity against the respiratory syncytial virus.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.2c00071DOI Listing

Publication Analysis

Top Keywords

biomimetic synthesis
8
discovery biomimetic
4
synthesis polycyclic
4
polycyclic polymethylated
4
polymethylated phloroglucinol
4
phloroglucinol collection
4
collection inspired
4
inspired reported
4
reported biomimetic
4
synthesis study
4

Similar Publications

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Advancing Alzheimer's Disease Modelling by Developing a Refined Biomimetic Brain Microenvironment for Facilitating High-Throughput Screening of Pharmacological Treatment Strategies.

Int J Mol Sci

December 2024

Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.

Alzheimer's disease (AD) poses a significant worldwide health challenge, requiring novel approaches for improved models and treatment development. This comprehensive review emphasises the systematic development and improvement of a biomimetic brain environment to address the shortcomings of existing AD models and enhance the efficiency of screening potential drug treatments. We identify drawbacks in traditional models and emphasise the necessity for more physiologically accurate systems through an in-depth analysis of current literature.

View Article and Find Full Text PDF

Pt@ZnCoO Microspheres as Peroxidase Mimics: Enhanced Catalytic Activity and Application for L-Cysteine Detection.

Molecules

January 2025

Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.

Compared to natural enzymes, the development of efficient artificial simulated enzymes, such as those based on bimetallic materials with high catalytic activity and good stability, is an important way until now. Herein, we employed ZnCoO microspheres as carriers to synthesize Pt-doped composites with different amounts using a one-pot method. The morphology and structure of the synthesized materials were characterized using XRD, SEM, BET, FT-IR, XPS, and Zeta potential techniques.

View Article and Find Full Text PDF

Human induced pluripotent stem cell line (PNUSCRi005-A) generated from severe type of Hunter syndrome patient carrying exonic deletion (exon 4-7 del) in in human iduronate 2-sulfatase gene.

Stem Cell Res

December 2024

Division of Medical Genetics and Metabolism, Department of Pediatrics, Pusan National University School of Medicine, Pusan National University Children's Hospital, Yangsan 50612, Gyeongsangnam-do, Republic of Korea. Electronic address:

Mucopolysaccharidosis Type Ⅱ, as Known as Hunter syndrome, is a rare X-liked genetic disease caused by mutations in iduronate-2-sulfatase (IDS) gene. We obtained peripheral blood mononuclear cells (PBMCs) from a patient with a severe type of Hunter syndrome carrying c.418 + 495_1006 + 1304 deletion in the IDS gene.

View Article and Find Full Text PDF

Prussian blue nanoparticles (PBNPs) have been identified as a promising candidate for biomimetic peroxidase (POD)-like activity, specifically due to the metal centres (Fe/Fe) of Prussian blue (PB), which have the potential to function as catalytically active centres. The decoration of PBNPs with desired functional polymers (such as amino- or carboxylate-based) primarily facilitates the subsequent linkage of biomolecules to the nanoparticles for their use in biosensor applications. Thus, the elucidation of the catalytic POD mimicry of these systems is of significant scientific interest but has not been investigated in depth yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!