All lead-free inorganic halide perovskites, as efficient solid-state light emission materials, have become ideal green optoelectronic materials to replace lead halide perovskites for diversified lighting and display applications with their excellent stability. Here, we investigated the pressure-derived optical and structural response of a zero-dimensional lead-free perovskite RbSbCl through applying controllable pressure. A pressure-induced blue shift of the broadband emission was achieved, and it was followed by the emission color transformation from yellow to green, which was ascribed to the electron-phonon coupling weakening and the suppression of structural deformation upon lattice contraction. In parallel, the band gap was narrowed by about 0.5 eV as a result of enhanced metal halide orbital overlap under high pressure. This work provides a fundamental understanding for modulating the optical properties of the low-dimensional metal halide perovskites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.1c04032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!