A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

InSe:Ge-doped InSe van der Waals heterostructure to enhance photogenerated carrier separation for self-powered photoelectrochemical-type photodetectors. | LitMetric

Two-dimensional (2D) van der Waals (vdW) materials with tunable heterostructures and superior optoelectronic properties have opened a new platform for various applications, , field-effect transistors, ultrasensitive photodetectors and photocatalysts. In this work, an InSe/InSe(Ge) (germanium doped InSe) vdW heterostructure is designed to improve the photoresponse performance of sole InSe in a photoelectrochemical (PEC)-type photodetector. Photoelectrochemical measurements demonstrated that this heterostructure has excellent photoresponse characteristics, including a photocurrent density of 9.8 μA cm, a photo-responsivity of 64 μA W, and a response time/recovery time of 0.128 s/0.1 s. Moreover, the measurements also revealed the self-powering capability and long-term cycling stability of this heterostructure. The electronic properties of the prepared pure and Ge-doped single crystals unveiled a negative and temperature-independent thermoelectric power and temperature-activated resistivity. The negative character of dominating charge carriers was confirmed by Hall measurements, which corroborated by electrical resistivity revealed a carrier concentration below ∼10 cm and an electron mobility of ∼500 cm V s in Ge-doped crystals. Additionally, the Mott-Schottky model explored the mechanism of charge transfer and enhanced PEC performance. Band bending at the InSe/InSe(Ge)-electrolyte interface benefits the separation and transformation of photogenerated carriers from the heterostructure to electrolyte due to the tunable energy band alignment. These results indicate that the InSe/InSe(Ge) vdW heterostructure is promising for PEC-type photodetectors, which provide a novel way to utilize 2D vdW heterostructures in optoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr07150eDOI Listing

Publication Analysis

Top Keywords

van der
8
der waals
8
vdw heterostructure
8
heterostructure
6
insege-doped inse
4
inse van
4
waals heterostructure
4
heterostructure enhance
4
enhance photogenerated
4
photogenerated carrier
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!