Ultrasensitive determination of 39 parent and emerging halogenated polycyclic aromatic hydrocarbons in human serum.

Anal Methods

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

Published: April 2022

Halogenated polycyclic aromatic hydrocarbons (HPAHs) have attracted extensive attention because of their high toxicity and bioaccumulation. However, there has been no report on the content of HPAHs in human tissues and the corresponding analytical method. In this study, a method for the simultaneous determination of 16 polycyclic aromatic hydrocarbons (PAHs) and 23 HPAHs in human serum was developed and validated. Simple and stable removal of interfering substances in complex serum and the detection of ultra-trace HPAHs are the key difficulties. After 0.5 mL serum was treated with formic acid and 10% isopropanol, samples were prepared by solid phase extraction (SPE) and analyzed by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). The recoveries of the method were 65-103%, with low detection limits of 0.001-0.019 ng mL. For HPAHs, the precision was in the range of 0.2-10% according to relative standard deviation (RSD). Subsequently, the developed method was validated for serum samples obtained in hospitals, and 8 PAHs and 12 HPAHs were detected. The concentration of ∑HPAHs was 23 ± 12 ng g lipid in females and 21 ± 10 ng g lipid in males, in which phenanthrene and anthracene halogenated derivatives were the main components. The level of HPAHs was correlated with PAHs, which was 23-119 times higher than that of HPAHs. The detected HPAHs contain highly toxic and persistent components, representing an ongoing human health risk, which should receive more attention.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ay00029fDOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
12
aromatic hydrocarbons
12
hpahs
9
halogenated polycyclic
8
human serum
8
hpahs human
8
pahs hpahs
8
hpahs detected
8
serum
5
ultrasensitive determination
4

Similar Publications

Acenes are an important class of polycyclic aromatic hydrocarbons that have gained considerable attention from chemists, physicists, and material scientists, due to their exceptional potential for organic electronics. They serve as an ideal platform for studying the physical and chemical properties of sp carbon frameworks in the one-dimensional limit and also provide a fertile playground to explore magnetism in graphenic nanostructures due to their zigzag edge topology. While higher acenes up to tridecacene have been successfully generated by means of on-surface synthesis, it is imperative to extend their synthesis toward even longer homologues to comprehensively understand the evolution of their electronic ground state.

View Article and Find Full Text PDF

Increased industrial offshore activities in northern waters raise the question of impact of polycyclic aromatic hydrocarbons (PAHs) on key Arctic marine species. One of these is the ecologically important polar cod (Boreogadus saida), which is the primary food source for Arctic marine mammals and seabirds. In the present work, we have conducted the first comprehensive proteomics study with this species by exploring the effects of dietary PAH exposure on the hepatic proteome, using benzo[a]pyrene (BaP) as a PAH model-compound.

View Article and Find Full Text PDF

Unveiling emerging polycyclic aromatic compounds in the urban atmospheric particulate matter.

Environ Int

January 2025

State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, China.

Despite the ubiquity and complexity of atmospheric polycyclic aromatic compounds (PACs), many of these compounds are largely unknown and lack sufficient toxicity data for comprehensive risk assessments. In this study, nontarget screening assisted by in-house and self-developed spectra databases was, therefore, employed to identify PACs in atmospheric particulate matter collected from multiple outdoor settings. Additionally, absorption, distribution, metabolism, excretion, and toxicity properties were evaluated to indicate PAC's overall abilities to cause adverse outcomes and incorporated into a novel health risk assessment model to assess their inhalation risks.

View Article and Find Full Text PDF

Despite being studied for almost two centuries, aromaticity has always been a controversial concept. We previously proposed a unified aromatic rule for π-conjugated systems by two-dimensional (2D) superatomic-molecule theory, where benzenoid rings are treated as period 2 2D superatoms (3π-N, 4π-O, 5π-F, 6π-Ne) and, further, bond to form 2D superatomic molecules. Herein, to build a 2D periodic table, we further extend the theory to period 3 (7π-P, 8π-S, 9π-Cl, 10π-Ar) and period 1 (1π-H, 2π-He) elements.

View Article and Find Full Text PDF

Selective and Divergent Synthesis of Naphthalene- and Phenanthrene-Fused Azahelicenes by Turning Rearrangement On or Off.

Chemistry

January 2025

Okayama Daigaku Daigakuin Shizen Kagaku Kenkyuka, Division of Applied Chemistry, JAPAN.

The Scholl reaction has been used to synthesize a variety of polycyclic aromatic hydrocarbons, where 1,2-aryl shifts have sometimes occurred to yield unique rearrangement products. However, such 1,2-aryl shifts are often uncontrollable, and the selective and divergent synthesis with or without rearrangement is desired. Here, we achieved the control of the rearrangement in the Scholl reaction of carbazoles by the N-substituents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!