We report on the emergence of spontaneously rotating clusters in active emulsions. Ensembles of self-propelling droplets sediment and then self-organise into planar, hexagonally ordered clusters which hover over the container bottom while spinning around the plane normal. This effect exists for symmetric and asymmetric arrangements of isotropic droplets and is therefore not caused by torques due to geometric asymmetries. We found, however, that individual droplets exhibit a helical swimming mode in a small window of intermediate activity in a force-free bulk medium. We show that by forming an ordered cluster, the droplets cooperatively suppress their chaotic dynamics and turn the transient instability into a steady rotational state. We analyse the collective rotational dynamics as a function of droplet activity and cluster size and further propose that the stable collective rotation in the cluster is caused by a cooperative coupling between the rotational modes of individual droplets in the cluster.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm01795kDOI Listing

Publication Analysis

Top Keywords

spontaneously rotating
8
rotating clusters
8
clusters active
8
individual droplets
8
droplets
6
active droplets
4
droplets report
4
report emergence
4
emergence spontaneously
4
active emulsions
4

Similar Publications

Reinforcement Learning is Impaired in the Sub-acute Post-stroke Period.

Neurorehabil Neural Repair

January 2025

Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA.

Background: In humans, most spontaneous recovery from motor impairment after stroke occurs in the first 3 months. Studies in animal models show higher responsiveness to training over a similar time-period. Both phenomena are often attributed to a milieu of heightened plasticity, which may share some mechanistic overlap with plasticity associated with normal motor learning.

View Article and Find Full Text PDF

Abstract Objective: Abnormal regional lung ventilation can lead to undesirable outcomes during the induction of anesthesia. Head rotated ventilation has proven to change the airflow of upper airway tract and be effective in increasing the tidal volume. This study aimed to investigate the influence of head rotated mask ventilation on regional ventilation distribution during the induction phase of anesthesia.

View Article and Find Full Text PDF

Tunable polarization entangled photon-pair source in rhombohedral boron nitride.

Sci Adv

January 2025

National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China.

Entangled photon-pair sources are pivotal in various quantum applications. Miniaturizing the quantum devices to meet the requirement in limited space applications drives the search for ultracompact entangled photon-pair sources. The rise of two-dimensional (2D) semiconductors has been demonstrated as ultracompact entangled photon-pair sources.

View Article and Find Full Text PDF

Alexander's law states that spontaneous nystagmus increases when looking in the direction of fast-phase and decreases during gaze in slow-phase direction. Disobedience to Alexander's law is occasionally observed in central nystagmus, but the underlying neural circuit mechanisms are poorly understood. In a retrospective analysis of 2,652 patients with posterior circulations stroke, we found a violation of Alexander's law in one or both directions of lateral gaze in 17 patients with lesions of unilateral lateral medulla affecting the vestibular nucleus.

View Article and Find Full Text PDF

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!