Background: Complex movement pathologies that are biopsychosocial in nature (eg, back pain) require a multidimensional approach for effective treatment. Virtual reality is a promising tool for rehabilitation, where therapeutic interventions can be gamified to promote and train specific movement behaviors while increasing enjoyment, engagement, and retention. We have previously created virtual reality-based tools to assess and promote lumbar excursion during reaching and functional gameplay tasks by manipulating the position of static and dynamic contact targets. Based on the framework of graded exposure rehabilitation, we have created a new virtual reality therapy aimed to alter movement speed while retaining the movement-promoting features of our other developments.
Objective: This study aims to compare lumbar flexion excursion and velocity across our previous and newly developed virtual reality tools in a healthy control cohort.
Methods: A total of 31 healthy participants (16 males, 15 females) took part in 3 gamified virtual reality therapies (ie, Reachality, Fishality, and Dodgeality), while whole-body 3D kinematics were collected at 100 Hz using a 14-camera motion capture system. Lumbar excursion, lumbar flexion velocity, and actual target impact location in the anterior and vertical direction were compared across each virtual reality task and between the 4 anthropometrically defined intended target impact locations using separate 2-way repeated measures analysis of variance models.
Results: There was an interaction between game and impact height for each outcome (all P<.001). Post-hoc simple effects models revealed that lumbar excursion was reduced during Reachality and Fishality relative to that during Dodgeality for the 2 higher impact heights but was greater during Reachality than during Fishality and Dodgeality for the lowest impact height. Peak lumbar flexion velocity was greater during Dodgeality than during Fishality and Reachality across heights. Actual target impact locations during Dodgeality and Fishality were lower relative to those during Reachality at higher intended impact locations but higher at lower intended impact locations. Finally, actual target impact location was further in the anterior direction for Reachality compared to that for Fishality and for Fishality relative to that for Dodgeality.
Conclusions: Lumbar flexion velocity was reduced during Fishality relative to that during Dodgeality and resembled velocity demands more similar to those for a self-paced reaching task (ie, Reachality). Additionally, lumbar motion and target impact location during Fishality were more similar to those during Reachality than to those during Dodgeality, which suggests that this new virtual reality game is an effective tool for shaping movement. These findings are encouraging for future research aimed at developing an individualized and graded virtual reality intervention for patients with low back pain and a high fear of movement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987950 | PMC |
http://dx.doi.org/10.2196/32027 | DOI Listing |
Sci Rep
January 2025
Acoustics Research Centre, University of Salford, The Crescent, Manchester, M5 4WT, UK.
It is well understood that a significant shift away from fossil fuel based transportation is necessary to limit the impacts of the climate crisis. Electric micromobility modes, such as electric scooters and electric bikes, have the potential to offer a lower-emission alternative to journeys made with internal combustion engine vehicles, and such modes of transport are becoming increasingly commonplace on our streets. Although offering advantages such as reduced air pollution and greater personal mobility, the widespread approval and uptake of electric micromobility is not without its challenges.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Psychological Institute and Network Aging Research, Heidelberg University, Heidelberg, Germany.
Background: Immersive virtual reality (iVR) has emerged as a training method to prepare medical first responders (MFRs) for mass casualty incidents (MCIs) and disasters in a resource-efficient, flexible, and safe manner. However, systematic evaluations and validations of potential performance indicators for virtual MCI training are still lacking.
Objective: This study aimed to investigate whether different performance indicators based on visual attention, triage performance, and information transmission can be effectively extended to MCI training in iVR by testing if they can discriminate between different levels of expertise.
PLoS One
January 2025
Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, United Kingdom.
Virtual reality environments presented on tablets and smartphones offer a novel way of measuring navigation skill and predicting real-world navigation problems. The extent to which such virtual tests are effective at predicting navigation in older populations remains unclear. We compared the performance of 20 older participants (54-74 years old) in wayfinding tasks in a real-world environment in London, UK, and in similar tasks designed in a mobile app-based test of navigation (Sea Hero Quest).
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Surgery, Virgen del Rocio University Hospital, Seville, Spain.
Pancreatic surgery is considered one of the most challenging interventions by many surgeons, mainly due to retroperitoneal location and proximity to key and delicate vascular structures. These factors make pancreatic resection a demanding procedure, with successful rates far from optimal and frequent postoperative complications. Surgical planning is essential to improve patient outcomes, and in this regard, many technological advances made in the last few years have proven to be extremely useful in medical fields.
View Article and Find Full Text PDFPerspect Clin Res
August 2024
Department of Pharmacy Practice, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
Post-COVID-19, the emergence of newer technologies has taken center stage. One such technology is metaverse, which is an extension of existing technologies such as virtual reality (VR) and augmented reality (AR) that enables a fully immersive communication platform through the utilization of digital twins and avatars in a three-dimensional digital space. Literature review has shown that the adoption of such technologies in the field of clinical trials can help in improving the therapeutic outcomes in patients while having numerous other benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!