We hypothesized that use of a composite three-dimensionally (3D) printed scaffold with electrospun nanofibers in conjunction with recipient-site preconditioning with an external volume expansion (EVE) device would enable successful dermal tissue regeneration of a synthetic polymer scaffold. Cell viability, cell infiltration, extracellular matrix deposition, scaffold contraction, and mRNA expression by dermal fibroblasts cultured on three different scaffolds, namely, 3D-printed scaffold with a collagen coating, 3D-printed scaffold with an electrospun polycaprolactone nanofiber and collagen coating, and 3D-printed scaffold with an electrospun polycaprolactone/collagen nanofiber, were measured. Before scaffold implantation, rats were treated for 2 h with an EVE device to evaluate the effect of this device on the recipient site. Cell proliferation rates were significantly higher on the 3D-printed scaffold with electrospun polycaprolactone nanofiber and collagen coating than on the other scaffolds. In cell invasion studies, the 3D-printed scaffold with electrospun polycaprolactone nanofiber and collagen coating showed better cell integration than the other scaffolds. Under stereomicroscopy, fibroblasts adhered tightly to the electrospun area, and the fibroblasts effectively produced both collagen and elastin. Rat skin treated with an EVE device exhibited increased HIF-1α protein expression and capillary neoformation compared with control skin. Invasion of CD8 cytotoxic lymphocytes surrounding the scaffold decreased when the recipient site was preconditioned with the EVE device. The composite 3D printed scaffold with electrospun nanofibers provided a favorable environment for proliferation, migration, and extracellular matrix synthesis by fibroblasts. Recipient-site preconditioning with an EVE device allowed for scaffold incorporation with less inflammation due to improved angiogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/08853282221080532 | DOI Listing |
Polymers (Basel)
January 2025
Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.
Our work describes the green synthesis of silver sulfide nanoparticles (AgS NPs) and their formulation into polycaprolactone fibers (PCL), aiming to improve the multifunctional biological performance of PCL membranes as scaffolds. For this purpose, an extract of rosemary () was employed as a reducing agent for the AgS NPs, obtaining irregular NPs and clusters of 5-60 nm, with a characteristic SPR absorption at 369 nm. AgS was successfully incorporated into PCL fibers by electrospinning using heparin (HEP) as a stabilizer/biocompatibility agent, obtaining nanostructured fibers with a ca.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan.
Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Plytinės Str. 25, 10105 Vilnius, Lithuania.
This article investigates the influence of different solvents on the mechanical properties of biocompatible and biodegradable polycaprolactone (PCL) scaffolds. During the research, using electrospinning technology, 27 samples of polycaprolactone nanofibers exposed to different solvents were produced. A tensile test was performed on the produced nanofiber samples, and the nanofiber mechanical properties, yield strength, elastic modulus, and elastic elongation were calculated, and load-displacement and stress-strain dependence diagrams were compared from the obtained results.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.
Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM).
View Article and Find Full Text PDFGels
December 2024
Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 27201 Kladno, Czech Republic.
Cardiovascular disease is one of the leading causes of death and serious illness in Europe and worldwide. Conventional treatment-replacing the damaged blood vessel with an autologous graft-is not always affordable for the patient, so alternative approaches are being sought. One such approach is patient-specific tissue bioprinting, which allows for precise distribution of cells, material, and biochemical signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!