Fibroblast growth factor receptor (FGFR) plays a vital role in tissue regeneration, angiogenesis, and embryogenesis. 3D-QSAR and molecular modeling methods are widely used for designing novel compounds for the determination of inhibitory activity against the biological target. In the present study, 3D-QSAR (CoMFA and CoMSIA) analysis was performed on 1, 6-naphthyridines, and pyridopyrimidines as potential FGFR inhibitors as anticancer agents. The best CoMFA and CoMSIA models were generated from test and training set derivatives with leave-one-out correlation coefficients () 0.591 and 0.667, cross-validated correlation coefficients () 0.584 and 0.652, conventional coefficients () 0.978 and 0.975 respectively. The developed models were validated by a test set of 12 compounds providing acceptable predictive correlation coefficient () 0.61 and 0.68 for both models. The generated CoMFA and CoMSIA contour maps could be used to design novel 1, 6-naphthyridine analogs. Molecular docking studies indicated that compound occupied the active site of the FGFR kinase interacting with Glu520 in the catalytic region, Asp630 in the DFG motif, and Met524 in the hinge region which compared with standard drug Ponatinib. The molecular dynamics simulation analysis revealed that the inhibitor displayed binding stability in the active site of the FGFR4 by making two hydrogen bonds and one π-cation interaction. Collectively the outcome of the study suggested that the applications of ligand-based and structure-based approaches could be applied for the design of new FGFR4 inhibitors as anticancer agents.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2053206DOI Listing

Publication Analysis

Top Keywords

inhibitors anticancer
12
comfa comsia
12
fibroblast growth
8
growth factor
8
factor receptor
8
receptor fgfr
8
fgfr inhibitors
8
anticancer agents
8
3d-qsar molecular
8
molecular docking
8

Similar Publications

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

View Article and Find Full Text PDF

Targeting MYC for the treatment of breast cancer: use of the novel MYC-GSPT1 degrader, GT19630.

Invest New Drugs

January 2025

UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.

Background: Since MYC is one of the most frequently altered driver genes involved in cancer formation, it is a potential target for new anti-cancer therapies. Historically, however, MYC has proved difficult to target due to the absence of a suitable crevice for binding potential low molecular weight drugs.

Objective: The aim of this study was to evaluate a novel molecular glue, dubbed GT19630, which degrades both MYC and GSPT1, for the treatment of breast cancer.

View Article and Find Full Text PDF

Characterization of Bozitinib as a potential therapeutic agent for MET-amplified gastric cancer.

Commun Biol

January 2025

Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

Hyperactive c-Met signaling pathway caused by altered MET is a common mechanism underlying gastric cancer and represents an attractive target for the treatment of gastric cancer with MET alterations. However, no c-Met kinase inhibitors are currently approved specifically for the treatment of c-Met-amplified gastric cancer. Recently, bozitinib, a highly selective c-Met kinase inhibitor, has shown remarkable potency in selectively inhibiting MET-altered non-small cell lung cancer and secondary glioblastoma.

View Article and Find Full Text PDF

Based on the molecular hybridization strategy, novel thienopyridine indole derivatives were designed and synthesized as tubulin polymerization inhibitors, and the in vitro antiproliferative potency on MGC-803, KYSE450 and HCT-116 cells was evaluated. Among them, compound 20b showed a broad-spectrum antiproliferative activity against 11 cancer cell lines, with IC values below 4 nmol/L. Notably, it demonstrated exceptional efficacy against MGC-803 (IC = 1.

View Article and Find Full Text PDF

Design, synthesis, and biological evaluation of Flavokavain B derivatives as potent TRF2 inhibitors for the treatment of Osteosarcoma.

Eur J Med Chem

January 2025

Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China. Electronic address:

Telomere repeat-binding factor 2 (TRF2) is a crucial component of the shelterin complex, commonly overexpressed in osteosarcoma (OS) and positively correlated with its progression. To date, effective TRF2 inhibitors for in vivo applications remain limited. In this study, a series of Flavokavain B derivatives were designed and synthesized, and their TRF2 inhibition and antitumor activity were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!