Effects of indirect plant-plant interaction via root exudate on growth and leaf chemical contents in .

Plant Signal Behav

Department of Biological Sciences, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.

Published: December 2022

Belowground plant-plant interactions can affect the concentrations of leaf chemicals, but the mechanism is not clear. Here, we investigated the effects of intra- and interspecific root exudates on the growth and leaf chemical content of . Seedlings of were grown with exposure to root exudates collected from other plants or from , or plants, and the total phenolic, condensed tannin, dry biomass, and chlorophyll contents of the leaves were examined. The root exudates from conspecific plants had no effect on the total phenolic, condensed tannin, and chlorophyll contents of the leaves but did significantly reduce the dry leaf biomass. Root exudates from heterospecific plants had different effects depending on the species. These results were different from the results of a previous study that examined the effects of direct plant-plant interaction in . Thus, indirect interaction via root exudates induces different effects in leaves from direct interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959531PMC
http://dx.doi.org/10.1080/15592324.2022.2050628DOI Listing

Publication Analysis

Top Keywords

root exudates
20
plant-plant interaction
8
interaction root
8
growth leaf
8
leaf chemical
8
plants total
8
total phenolic
8
phenolic condensed
8
condensed tannin
8
chlorophyll contents
8

Similar Publications

Deficit irrigation differentially modulates rhizosphere microbial community and metabolites of two potato genotypes differing in drought tolerance.

J Environ Manage

December 2024

State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Zhongguancun South Street, Haidian District, Beijing, 100081, PR China.

Beneficial interactions between plant root exudates and the rhizosphere microbial community can alleviate the adverse effects of environmental stress on crop yields, but these interactions remain poorly understood in potato growing in drying soil. We investigated the responses of rhizosphere soil microorganisms and metabolites, and biochemical and physiological responses of two potato genotypes with contrasting drought tolerance (drought tolerant 'C93' and drought sensitive 'Favorita'), to two different irrigation treatments imposing contrasting soil water availability in the field. Deficit irrigation altered rhizosphere soil bacterial communities and metabolites of C93 more than Favorita.

View Article and Find Full Text PDF

Considerable biological decline of continuously cropped alfalfa may be tightly linked to rhizosphere metabolism. However, plant-soil feedbacks and age-related metabolic changes in alfalfa stands remain unexplored. The aim of this study was to identify the linkages of rhizosphere and root metabolites, particularly autotoxins and prebiotics, to alfalfa decline under continuous cropping.

View Article and Find Full Text PDF

Role of bacterial quorum sensing in plant growth promotion.

World J Microbiol Biotechnol

December 2024

Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India.

Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing.

View Article and Find Full Text PDF

Background: Phytophthora sojae (Kaufmann and Gerdemann), a pathogenic oomycete, causes one of the most destructive soybean diseases, Phytophthora root and stem rot (PRR). Previous studies have shown that benzoxazines (BXs) such as 6-methoxy-benzoxazolin-2-one (MBOA) and benzoxazoline-2-one (BOA) in maize root exudates inhibit the chemotaxis of zoospores, as well as the mycelial growth and pathogenicity of P. sojae.

View Article and Find Full Text PDF

Nitrogen (N) is one of the three major elements required for plant growth and development. It is of great significance to study the effects of different nitrogen application levels on the growth and root exudates of Phlomoides rotata, and can provide a theoretical basis for its scientific application of fertilizer to increase production. In this study, Phlomoides rotata were grown under different nitrogen conditions for two months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!