A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recognition language classifiers demonstrate far transfer of learning. | LitMetric

Recognition language classifiers demonstrate far transfer of learning.

Psychon Bull Rev

Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Brookings Drive, Saint Louis, MO, 63130, USA.

Published: August 2022

Machine learners trained on verbal justifications of recognition decisions reliably predict recognition accuracy. If these recognition language classifiers are recollection sensitive, they should generalize beyond the single-item, verbal recognition paradigms upon which they were trained. To test this, three classifiers were trained to distinguish justification language in three different single-item verbal recognition paradigms, learning to distinguish the language justifying hits from false alarms, high from medium confidence hits, and remember from know judgements. The resulting classifiers were then used to predictively score language justifying correct versus incorrect eyewitness lineup selections constituting a test of far transfer because of the differences in materials (faces vs. words), subject populations (undergraduate vs. online), testing procedures (single vs. multiple items), and test lengths (12 vs. hundreds of targets per subject) among others. All three classifiers reliably predicted eyewitness accuracy despite these differences. Additionally, mixed modeling demonstrated that the classifiers demonstrated both convergent and divergent validity with respect to the recollection sensitivity hypothesis. That is, they strongly predicted the accuracy of eyewitness selections (i.e., hits vs. false alarms) but failed to predict the accuracy of eyewitness rejections (i.e., correct rejections vs. misses). Moreover, one classifier was shown to predict eyewitness confidence despite being trained on a design devoid of all metacognitive judgments. These findings support the hypothesis that recognition language classifiers detect recollection conveyed in the language subjects use to justify their memory decisions.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13423-022-02085-1DOI Listing

Publication Analysis

Top Keywords

recognition language
12
language classifiers
12
single-item verbal
8
verbal recognition
8
recognition paradigms
8
three classifiers
8
language justifying
8
hits false
8
false alarms
8
accuracy eyewitness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!