Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The long start-up period is a major challenging issue for the widespread application of aerobic granular sludge (AGS). In this study, a novel rapid start-up strategy was developed by inoculating Phanerochaete chrysosporium (P. chrysosporium) pellets as the induced nucleus in a sequencing batch airlift reactor (SBAR) to enhance activated sludge granulation. The results demonstrated that P. chrysosporium pellets could effectively shorten the aerobic granulation time from 32 to 20 days. The AGS promoted by P. chrysosporium pellets had a larger average diameter (2.60-2.74 mm) than that without P. chrysosporium pellets (1.78-1.88 mm) and had better biomass retention capacity and sedimentation properties; its mixed liquor suspended solids (MLSS) and sludge volume index (SVI) reached approximately 5.2 g/L and 45 mL/g, respectively. The addition of P. chrysosporium pellets promoted the secretion of extracellular polymeric substances (EPS), especially protein (PN). The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH-N), total nitrogen (TN), and total phosphorus (TP) in P. chrysosporium pellets reactor were 98.91%, 89.17%, 64.73%, and 94.42%, respectively, which were higher than those in the reactor without P. chrysosporium pellets (88.73%, 82.09%, 55.75%, and 88.92%). High throughput sequencing analysis indicated that several functional genera that were responsible for the formation of aerobic granules and the removal of pollutants, such as Acinetobacter, Pseudomonas, Janthinobacterium, and Enterobacter, were found to be predominant in the mature sludge granules promoted by P. chrysosporium pellets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-022-02698-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!