For development of a long-lasting protective malaria vaccine, it is crucial to understand whether Plasmodium-induced memory B cells (MBCs) or plasma cells develop and stably contribute to protective immunity, or on the contrary the parasite suppresses antibody responses by inducing MBC dysfunction. The expansion of T-bet atypical MBCs is described in chronic Plasmodium falciparum-exposed individuals. However, it remains unclear whether accumulation of T-bet atypical MBCs is indicative of a protective role or rather an impaired function of the immune system in malaria. Here, the phenotypic and functional features of T-bet atypical MBCs were studied in P. vivax patients living in an area of low malaria transmission. During P. vivax infection, the patients produced a twofold higher frequency of T-bet atypical MBCs compared to malaria non-exposed individuals. This distinct atypical MBC subset had a switched IgG phenotype with overexpression of activation markers and FcRL5, and decreased Syk phosphorylation upon BCR stimulation. Post-infection, expansion of T-bet IgG atypical MBCs was maintained for at least 3 months. Further studies of the contribution of T-bet atypical MBC function to humoral immunity showed that synergizing IFN-γ with TLR7/8 and IL-21 signals was required for their differentiation into plasma cells and antibody secretion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941117 | PMC |
http://dx.doi.org/10.1038/s41598-022-08976-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!