Cochlear implantation is a standard treatment option due to expanding indications. Cranial magnetic resonance imaging (cMRI) has become a widespread diagnostic tool. Therefore, an increased number of cochlear implant (CI) users are undergoing cMRI scans. This study aimed to investigate the issue of the CI magnet impacting MRI quality and artifacts. 1.5 T and 3 T MRI scans with 4 defined sequences (T2-TSE, T2-TIRM, T1-3D-MPRAGE, and TDI) were performed on a phantom with a CI (SYNCHRONY System by MED-EL Austria) in place. The resulting MRI artifacts were retrospectively compared to MRI artifacts observed in patients with a CI. All images were transferred to AMIRA and visualized by manual segmentation. Usable image quality was achieved in three sequences (T2-TSE, T2-TIRM and T1-mprage). Observed artifacts differed in shape and size depending on the sequence. Maximum diameters of signal void areas ranged from 58 × 108 × 98 mm to 127 × 123 × 153 mm. Image distortions were larger. MRI artifacts caused by the SYNCHRONY system are asymmetric with varying shape, depending on the sequence. The phantom artefacts are similar to those in CI users. Considering the observed asymmetry, the hypothesis of varying implantation locations resulting in varying positions of the signal void area needs to be further investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940987PMC
http://dx.doi.org/10.1038/s41598-022-08988-2DOI Listing

Publication Analysis

Top Keywords

mri artifacts
12
15 t 3 t
8
3 t mri
8
sequences t2-tse
8
t2-tse t2-tirm
8
synchrony system
8
depending sequence
8
signal void
8
mri
6
artifacts
5

Similar Publications

AI generated synthetic STIR of the lumbar spine from T1 and T2 MRI sequences trained with open-source algorithms.

AJNR Am J Neuroradiol

January 2025

From the Orthopedic Data Innovation Lab (ODIL), Hospital for Special Surgery (A.M.L.S., M.A.F.), Department of Radiology and Imaging, Hospital for Special Surgery Centre (E.E.X, Z.I, E.T.T, D.B.S, J.L.C)and Department of Population Health Sciences, Weill Cornell Medicine (M.A.F), New York, New York, USA.

Background And Purpose: To train and evaluate an open-source generative adversarial networks (GANs) to create synthetic lumbar spine MRI STIR volumes from T1 and T2 sequences, providing a proof-of-concept that could allow for faster MRI examinations.

Materials And Methods: 1817 MRI examinations with sagittal T1, T2, and STIR sequences were accumulated and randomly divided into training, validation, and test sets. GANs were trained to create synthetic STIR volumes using the T1 and T2 volumes as inputs, optimized using the validation set, then applied to the test set.

View Article and Find Full Text PDF

Zero-echo time imaging achieves whole brain activity mapping without ventral signal loss in mice.

Neuroimage

January 2025

Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Japan. Electronic address:

Functional MRI (fMRI) is an important tool for investigating functional networks. However, the widely used fMRI with T2*-weighted imaging in rodents has the problem of signal lack in the lateral ventral area of forebrain including the amygdala, which is essential for not only emotion but also noxious pain. Here, we scouted the zero-echo time (ZTE) sequence, which is robust to magnetic susceptibility and motion-derived artifacts, to image activation in the whole brain including the amygdala following the noxious stimulation to the hind paw.

View Article and Find Full Text PDF

Audiovisual Breathing Guidance for Improved Image Quality and Scan Efficiency of T2- and Diffusion-Weighted Liver MRI.

Invest Radiol

January 2025

From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (N.M., A.I., A.L., L.B., T.D., D. Kravchenko, D. Kuetting, C.C.P., J.A.L.); Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany (N.M., A.I., L.B., D. Kravchenko, D. Kuetting, J.A.L.); Philips Healthcare, Hamburg, Germany (C.K.); Philips Medical Systems, Eindhoven, the Netherlands (A.H.-M.); and Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany (C.Y.).

Objectives: Impaired image quality and long scan times frequently occur in respiratory-triggered sequences in liver magnetic resonance imaging (MRI). We evaluated the impact of an in-bore active breathing guidance (BG) application on image quality and scan time of respiratory-triggered T2-weighted (T2) and diffusion-weighted imaging (DWI) by comparing sequences with standard triggering (T2S and DWIS) and with BG (T2BG and DWIBG).

Materials And Methods: In this prospective study, random patients with clinical indications for liver MRI underwent 3 T MRI with standard and BG acquisitions.

View Article and Find Full Text PDF

Pulmonary atresia with ventricular septal defect (PA-VSD) is usually diagnosed by transthoracic or fetal echocardiography, with the prenatal diagnosis being feasible and accurate if fetal cardiology services are available. The limitations of transthoracic echocardiography (TTE) in the evaluation of PA-VSD include the complete evaluation of the pulmonary arteries and patent ductus arteriosus, quantitative evaluation of the right ventricle size and function, and delineation of associated cardiac anomalies such as coronary artery anomalies, anomalies of systemic or pulmonary venous return, and complex arch anomalies. Echocardiography also has limitations in evaluating hemodynamics such as flow volumes, shunts, and regurgitant fraction.

View Article and Find Full Text PDF

Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!