Fermentation of dietary nutrients in ruminants' gastrointestinal (GI) tract is an essential mechanism utilized to meet daily energy requirements. Especially in lactating dairy cows, the GI microbiome plays a pivotal role in the breakdown of indigestible plant polysaccharides and supply most AAs, fatty acids, and gluconeogenic precursors for milk synthesis. Although the contribution of the rumen microbiome to production efficiency in dairy cows has been widely researched over the years, variations throughout the lactation and the lower gut microbiome contribution to these traits remain poorly characterized. Therefore, we investigated throughout lactation the relationship between the rumen and lower gut microbiomes with production efficiency traits in Holstein cows. We found that the microbiome from both locations has temporal stability throughout lactation, yet factors such as feed intake levels played a significant role in shaping microbiome diversity. The composition of the rumen microbiome was dependent on feed intake. In contrast, the lower gut microbiome was less dependent on feed intake and associated with a potentially enhanced ability to digest dietary nutrients. Therefore, milk production traits may be more correlated with microorganisms present in the lower gut than previously expected. The current study's findings advance our understanding of the temporal relationship of the rumen and lower gut microbiomes by enabling a broader overview of the gut microbiome and production efficiency towards more sustainable livestock production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940958 | PMC |
http://dx.doi.org/10.1038/s41598-022-08761-5 | DOI Listing |
BMC Microbiol
January 2025
Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
Background: Folpet is a nonspecific sulfonamide fungicide widely used to protect crops from mildew. However, the in vivo effects of folpet on glucose metabolism homeostasis, gut microbiota, and abundance of drug resistance genes remain unknown. The purpose of this study was to assess the effects of the pesticide, folpet, on glucose metabolism homeostasis, and folpet-induced changes in the intestinal microbiota and resistance genes in mice.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Department of Endocrinology, First Affiliated Hospital of Baotou Medical College, Baotou Inner Mongolia Autonomous Region 014010, China.
Obesity, as a global health crisis, is increasingly linked to intestinal microecology. Probiotics colonise the body, effectively regulating the balance of intestinal flora, while strengthening the intestinal barrier, activating the immune response, releasing beneficial substances, and maintaining micro-ecological balance. This process not only enhances the defence against pathogens, but also reduces the production of inflammatory factors and lowers the level of chronic inflammation.
View Article and Find Full Text PDFPLoS One
January 2025
Fujian Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
Introduction: Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease characterized by a lack of effective therapies. Mesenchymal stem cells (MSCs) have garnered significant interest in the realm of lung regeneration due to their abundant availability, ease of isolation, and capacity for expansion. The objective of our study was to investigate the potential therapeutic role of umbilical cord-derived MSCs (UC-MSCs) in the management of PF, with a focus on the alterations in the gut microbiota and its metabolites during the use of UC-MSCs for the treatment of pulmonary fibrosis, as well as the possible mechanisms involved.
View Article and Find Full Text PDFBackground: Interest and consumption of plant-based diets (PBD) in the 21 century continued to increase, particularly in western societies, with the perception that PBDs are associated with beneficial health outcomes and a reduced environmental footprint. Evidence suggests that PBDs may be protective against neurodegenerative diseases, such as Alzheimer's disease (AD). Health effects of PBDs such as reduction of inflammation, shift in gut microbiota composition, reduced risk of type 2 diabetes and cardiovascular disease are all believed to attribute to reduced AD risk.
View Article and Find Full Text PDFBackground: Gut microbiome features have been linked with many diseases including Alzheimer's disease (AD). Evidence suggests that the gut microbiota may impact cognition of AD patients. We explored the association of gut microbiota and three PACC3 cognitive scores in individuals at risk for AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!