RNA polymerase (RNAP) frequently pauses during the transcription of DNA to RNA to regulate gene expression. Transcription factors NusA and NusG modulate pausing, have opposing roles, but can bind RNAP simultaneously. Here we report cryo-EM reconstructions of Escherichia coli RNAP bound to NusG, or NusA, or both. RNAP conformational changes, referred to as swivelling, correlate with transcriptional pausing. NusA facilitates RNAP swivelling to further increase pausing, while NusG counteracts this role. Their structural effects are consistent with biochemical results on two categories of transcriptional pauses. In addition, the structures suggest a cooperative mechanism of NusA and NusG during Rho-mediated transcription termination. Our results provide a structural rationale for the stochastic nature of pausing and termination and how NusA and NusG can modulate it.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940904 | PMC |
http://dx.doi.org/10.1038/s41467-022-29148-0 | DOI Listing |
FEMS Microbiol Lett
December 2024
Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad, India-500039.
Bacterial transcription terminator, Rho is an RNA-dependent ATPase that terminates transcription. Several structures of pre-termination complexes of the Rho-transcription elongation complex (EC) revealed a static picture of components of the EC that come close to the nascent RNA-bound Rho, where many of the residues of EC reside ≤ 10 Å from the Rho residues. However, the in vitro-formed Rho-EC complexes do not reveal the in vivo Rho-EC dynamic interaction patterns during the termination process.
View Article and Find Full Text PDFNature
January 2025
Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Structures recently have been reported of molecular assemblies that mediate transcription-translation coupling in . In these molecular assemblies, termed "coupled transcription-translation complexes" or "TTC-B", RNA polymerase (RNAP) interacts directly with the ribosome, the transcription elongation factor NusG or its paralog RfaH forms a bridge between RNAP and ribosome, and the transcription elongation factor NusA optionally forms a second bridge between RNAP and ribosome. Here, we have determined structures of coupled transcription-translation complexes having mRNA spacers between RNAP and ribosome longer than the maximum-length mRNA spacer compatible with formation of TTC-B.
View Article and Find Full Text PDFbioRxiv
June 2024
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
Human gut species encode numerous (eight or more) tightly regulated capsular polysaccharides (CPS). Specialized paralogs of the universal transcription elongation factor NusG, called UpxY (Y), and an anti-Y UpxZ (Z) are encoded by the first two genes of each CPS operon. The Y-Z regulators combine with promoter inversions to limit CPS transcription to a single operon in most cells.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
Gene Transfer Agents (GTAs) are phage-like particles that cannot self-multiply and be infectious. Caulobacter crescentus, a bacterium best known as a model organism to study bacterial cell biology and cell cycle regulation, has recently been demonstrated to produce bona fide GTA particles (CcGTA). Since C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!