Chemometric optimisation of enzymatic hydrolysis of beechwood xylan to target desired xylooligosaccharides.

Bioresour Technol

Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; ARC Industrial Transformation Research Hub for Processing Advanced Lignocellulosics (PALS), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia. Electronic address:

Published: May 2022

Generation of specific xylooligosaccharides (XOS) is attractive to the pharmaceutical and food industries due to the importance of their structure upon their application. This study used chemometrics to develop a comprehensive computational modelling set to predict the parameters maximising the generation of the desired XOS during enzymatic hydrolysis. The evaluated parameters included pH, temperature, substrate concentration, enzyme dosage and reaction time. A Box-Behnken design was combined with response surface methodology to develop the models. High-performance anion-exchange chromatography coupled with triple-quadrupole mass spectrometry (HPAEC-QqQ-MS) allowed the identification of 22 XOS within beechwood xylan hydrolysates. These data were used to validate the developed models and demonstrated their accuracy in predicting the parameters maximising the generation of the desired XOS. The maximum yields for X2-X6 were 314.2 ± 1.2, 76.6 ± 4.5, 38.4 ± 0.4, 17.8 ± 0.7, and 5.3 ± 0.2 mg/g xylan, respectively. These values map closely to the model predicted values 311.7, 92.6, 43.0, 16.3, and 4.9 mg/g xylan, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127041DOI Listing

Publication Analysis

Top Keywords

enzymatic hydrolysis
8
beechwood xylan
8
parameters maximising
8
maximising generation
8
generation desired
8
desired xos
8
chemometric optimisation
4
optimisation enzymatic
4
hydrolysis beechwood
4
xylan
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!