Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application.

Chemosphere

Biorefining and Advanced Materials Research Center, SRUC (Scotland's Rural College), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India. Electronic address:

Published: July 2022

AI Article Synopsis

  • - CBNMs are advanced materials with unique properties like high aspect ratios and excellent thermal, electrical, and optical performance, making them promising for various applications in medicine, electronics, and environmental remediation.
  • - These materials are particularly effective in adsorbing heavy metal ions from wastewater, but there is a lack of reliable tools to assess their potential health risks due to complex detection methods.
  • - The review discusses the role of CBNMs in removing pollutants from wastewater, the challenges faced in managing contaminants, and potential photocatalytic methods for treatment, highlighting both limitations and future opportunities.

Article Abstract

Carbon-based nanomaterials (CBNMs) have attracted significant alert due to the affluent science underpinning their implementations associated with a novel mixture of high aspect proportions, greater thermal and electrical performance, outstanding optical features, and high exterior area. CBNMs not only bear assurance in a broad range of implementations in medication, nano and microelectronics, and ecological remedies but may also be utilized in practical laboratory determinations. More specifically, CBNMs perform as an outstanding adsorbent in terminating heavy metal ions (HMI) from wastewater. There is presently a deficiency of powerful threat inspection instruments owing to their complex detection and related deficit in the health risk database. Therefore, our present review concentrates on spreading CBNMs to release pollutants from wastewater. The article wraps the effect of these contaminants and photocatalytic strategies towards treating these mixtures in wastewater, along with their restrictions and challenges, convincing resolutions, and possibilities of these approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134364DOI Listing

Publication Analysis

Top Keywords

carbon-based nanomaterials
8
nanomaterials cbnms
8
cbnms
5
advances carbon-based
4
wastewater
4
cbnms wastewater
4
wastewater treatment
4
treatment synthesis
4
synthesis application
4
application carbon-based
4

Similar Publications

Ofloxacin, a commonly prescribed antibiotic, raises serious environmental concerns due to its persistence in aquatic systems. This study offers new insights into the environmental behavior of ofloxacin and its interactions with carbon-based adsorbents with the aim of enhancing our understanding of its removal mechanisms via adsorption processes. Using a comprehensive computational approach, we analyzed the speciation, pK values, and solubility of ofloxacin across various pH conditions, accounting for all four microspecies, including the often-overlooked neutral form.

View Article and Find Full Text PDF

Laser ablation propulsion is an important micro-propulsion system for microsatellites. Polymers with carbon added and carbon-based nanomaterial have been demonstrated as propellants with high impulse coupling coefficient (C). Among them, the carbon nanotube film exhibits a low ablation threshold fluence of 25 mJ/cm, which shows its potential for propulsion under low laser fluence.

View Article and Find Full Text PDF

Two-dimensional (2D) nanomaterials are at the forefront of potential technological advancements. Carbon-based materials have been extensively studied since synthesizing graphene, which revealed properties of great interest for novel applications across diverse scientific and technological domains. New carbon allotropes continue to be explored theoretically, with several successful synthesis processes for carbon-based materials recently achieved.

View Article and Find Full Text PDF

The CompSafeNano project, a Research and Innovation Staff Exchange (RISE) project funded under the European Union's Horizon 2020 program, aims to advance the safety and innovation potential of nanomaterials (NMs) by integrating cutting-edge nanoinformatics, computational modelling, and predictive toxicology to enable design of safer NMs at the earliest stage of materials development. The project leverages Safe-by-Design (SbD) principles to ensure the development of inherently safer NMs, enhancing both regulatory compliance and international collaboration. By building on established nanoinformatics frameworks, such as those developed in the H2020-funded projects NanoSolveIT and NanoCommons, CompSafeNano addresses critical challenges in nanosafety through development and integration of innovative methodologies, including advanced models, approaches including machine learning (ML) and artificial intelligence (AI)-driven predictive models and 1st-principles computational modelling of NMs properties, interactions and effects on living systems.

View Article and Find Full Text PDF

Recent advances in optical heavy water sensors.

Chem Commun (Camb)

January 2025

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.

DO and HO, as two important solvents with very similar properties, play a pivotal role in nuclear industrial production, life and scientific research. Unfortunately, DO and HO are highly susceptible to contamination by each other, so effective qualitative and quantitative analyses of both are necessary. This review comprehensively discusses the progress in optical sensing for the detection of a trace amount of HO in heavy water or , mainly including five types of analytical systems: inorganic nanocrystals, carbon-based nanomaterials, lanthanide complexes, organic polymers, and organic small molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!