Nitroaromatic compounds (NACs) as important constituents of atmospheric humic-like substances (HULIS) and brown carbon (BrC) affect the Earth's climate and pose a serious environmental hazard. We investigated seasonal size-segregated NACs in aerosol samples from the urban background environment in Ljubljana, Slovenia. Total concentrations of twenty NACs in PM were on average from 0.51 ng m (summer) to 109 ng m (winter), and contributed the most to submicron aerosols (more than 74%). Besides 4-nitrocatechol (4NC) as the prevailing species, methylnitrocatechols (MNCs) and nitrophenols (NPs), we reported on some very rarely mentioned, but also on five novel NACs (i.e., 3H4NBA: 3-hydroxy-4-nitrobenzoic acid, 3MeO4NP: 3-methoxy-4-nitrophenol, 4Et5NC: 4-ethyl-5-nitrocatechol, 3Et5NC: 3-ethyl-5-nitrocatechol and 3MeO5NC: 3-methoxy-5-nitrocatechol). Concentrations of 3MeO5NC, 4Et5NC and 3Et5NC were enhanced during cold seasons, contributing up to 11% to total NAC in winter. In cold season, NAC size distributions were characterized with the peaks in the broader size range of 0.305-1.01 μm (accumulation mode), with 4NC and alkyl-nitrocatechols (∑(M/Et)NC) as the most abundant, followed by 4-nitrosyringol, nitrophenols and nitroguaiacols. In spring, a pronounced peak of ∑(M/Et)NC was observed in the accumulation mode (0.305-0.56 μm) as well as in the coarse one. A strong correlation of all NACs with ∑(M/Et)NC and levoglucosan indicates that primary emissions of wood burning were the most important source of NACs, but their secondary formation (e.g., aqueous-phase at higher ambient RH) in cold season could also be a significant one. In warmer season, NACs may be mostly derived from traffic-related aromatic VOCs. The contribution of NACs to the light absorption of the aqueous extracts was up to 10-times higher (contribution to Abs up to 31%) than their mass contributions to WSOC (up to 3%) of corresponding size-segregated aerosols, confirming that most of the identified NACs are strong BrC chromophores.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134381DOI Listing

Publication Analysis

Top Keywords

nacs
9
nitroaromatic compounds
8
brown carbon
8
light absorption
8
cold season
8
accumulation mode
8
seasonal variability
4
variability nitroaromatic
4
compounds ambient
4
ambient aerosols
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!