We present a comprehensive description of the differentiating somatic cell types (Sertoli, Leydig, and peritubular myoid cells) of the mouse testis from embryonic day 10.5 (E10.5) to adulthood, postnatal day 60 (P60). Immunohistochemistry was used to analyze expression of: Sox9 (a Sertoli cell marker), 3βHSD-1 (a fetal Leydig cell marker), 3βHSD-6 (an adult Leydig cell marker), α-actin (a peritubular myoid cell marker), and androgen receptor (a marker of all three somatic cell types). The temporal-spatial expression of these markers was used to interrogate findings of earlier experimental studies on the origin of Sertoli, Leydig and peritubular myoid cells, as well as extend previous descriptive studies across a broader developmental period (E10.5-P60). Such comparisons demonstrate inconsistencies that require further examination and raise questions regarding conservation of developmental mechanisms across higher vertebrate species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diff.2022.02.006 | DOI Listing |
Elife
January 2025
Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit Brussel, Brussels, Belgium.
Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys.
View Article and Find Full Text PDFFEBS J
December 2024
UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility.
View Article and Find Full Text PDFMicrosc Microanal
October 2024
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China.
This comprehensive study delved into the detrimental effects of cadmium (Cd), a toxic heavy metal, on the testicular lamina propria (LP), a key player in spermatogenesis, and the maintenance of testicular stem cell niches. Utilizing transmission electron microscopy, immunohistochemistry, and double-labeling immunofluorescence, the research characterized the structural and cellular components of mouse testicular LP under Cd exposure and investigated the protective effects of quercetin. The findings illustrated that Cd exposure results in significant morphological and cellular modifications within the LP, including the apoptosis of peritubular myoid cells, an upsurge in CD34+ stromal cells displaying anti-apoptotic behaviors, and an excessive production of collagen Type I fibers and extracellular matrix.
View Article and Find Full Text PDFHum Reprod
October 2024
Biology of the Testis Lab, Research Group Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
Study Question: Do testis-specific cells have a normal karyotype in non-mosaic postpubertal Klinefelter syndrome (KS) patients with focal spermatogenesis and in non-mosaic prepubertal KS boys?
Summary Answer: Spermatogonia have a 46, XY karyotype, and Sertoli cells surrounding these spermatogonia in postpubertal patients also have a 46, XY karyotype, whereas, in prepubertal KS boys, Sertoli cells surrounding the spermatogonia still have a 47, XXY karyotype.
What Is Known Already: A significant proportion of patients with non-mosaic KS can have children by using assisted reproductive techniques thanks to focal spermatogenesis. However, the karyotype of the cells that are able to support focal spermatogenesis has not been revealed.
Life Sci
October 2024
Institute of Biomedical Technology, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Testicular organoids have great potential for maintaining male fertility and even restoring male infertility. However, existing studies on generating organoids with testis-specific structure and function are scarce and come with many limitations. Research on cryopreservation of testicular organoids is even more limited, and inappropriate cryopreservation methods may result in the loss of properties in resuscitated or regenerated organoids, rendering them unsuitable for clinical or research needs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!