Identification of piRNA disease associations using deep learning.

Comput Struct Biotechnol J

Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea.

Published: March 2022

Piwi-interacting RNAs (piRNAs) play a pivotal role in maintaining genome integrity by repression of transposable elements, gene stability, and association with various disease progressions. Cost-efficient computational methods for the identification of piRNA disease associations promote the efficacy of disease-specific drug development. In this regard, we developed a simple, robust, and efficient deep learning method for identifying the piRNA disease associations known as piRDA. The proposed architecture extracts the most significant and abstract information from raw sequences represented in a simplicated piRNA disease pair without any involvement of features engineering. Two-step positive unlabeled learning and bootstrapping technique are utilized to abstain from the false-negative and biased predictions dealing with positive unlabeled data. The performance of proposed method piRDA is evaluated using k-fold cross-validation. The piRDA is significantly improved in all the performance evaluation measures for the identification of piRNA disease associations in comparison to state-of-the-art method. Moreover, it is thus projected conclusively that the proposed computational method could play a significant role as a supportive and practical tool for primitive disease mechanisms and pharmaceutical research such as in academia and drug design. Eventually, the proposed model can be accessed using publicly available and user-friendly web tool athttp://nsclbio.jbnu.ac.kr/tools/piRDA/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908038PMC
http://dx.doi.org/10.1016/j.csbj.2022.02.026DOI Listing

Publication Analysis

Top Keywords

pirna disease
20
disease associations
16
identification pirna
12
deep learning
8
positive unlabeled
8
disease
7
associations
4
associations deep
4
learning piwi-interacting
4
piwi-interacting rnas
4

Similar Publications

Background: East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts.

View Article and Find Full Text PDF

Caenorhabditis Elegans as a Model for Environmental Epigenetics.

Curr Environ Health Rep

January 2025

Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA.

Purpose Of Review: The burgeoning field of environmental epigenetics has revealed the malleability of the epigenome and uncovered numerous instances of its sensitivity to environmental influences; however, pinpointing specific mechanisms that tie together environmental triggers, epigenetic pathways, and organismal responses has proven difficult. This article describes how Caenorhabditis elegans can fill this gap, serving as a useful model for the discovery of molecular epigenetic mechanisms that are conserved in humans.

Recent Findings: Recent results show that environmental stressors such as methylmercury, arsenite, starvation, heat, bacterial infection, and mitochondrial inhibitors can all have profound effects on the epigenome, with some insults showing epigenetic and organismal effects for multiple generations.

View Article and Find Full Text PDF

piR-26441 inhibits mitochondrial oxidative phosphorylation and tumorigenesis in ovarian cancer through m6A modification by interacting with YTHDC1.

Cell Death Dis

January 2025

Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Ovarian cancer (OC) is a heterogeneous cancer. In contrast to other tumor cells, which rely primarily on aerobic glycolysis (Warburg effect) as their energy source, oxidative phosphorylation (OXPHOS) is also one of its major metabolic modes. Piwi-interacting RNAs (piRNAs) play a regulatory function in various biological processes in tumor cells.

View Article and Find Full Text PDF

The highly conserved PIWI-interacting RNA CRAPIR antagonizes PA2G4-mediated NF110-NF45 disassembly to promote heart regeneration in mice.

Nat Cardiovasc Res

January 2025

Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education; National Key Laboratory of Frigid Zone Cardiovascular Diseases), Harbin Medical University, Harbin, China.

Targeting the cardiomyocyte cell cycle is a promising strategy for heart repair following injury. Here, we identify a cardiac-regeneration-associated PIWI-interacting RNA (CRAPIR) as a regulator of cardiomyocyte proliferation. Genetic ablation or antagomir-mediated knockdown of CRAPIR in mice impairs cardiomyocyte proliferation and reduces heart regenerative potential.

View Article and Find Full Text PDF

Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!