Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research.

Eur Heart J Digit Health

Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts' Causeway, Cambridge, CB1 8RN, UK.

Published: December 2021

Vascular ageing biomarkers have been found to be predictive of cardiovascular risk independently of classical risk factors, yet are not widely used in clinical practice. In this review, we present two basic approaches for using machine learning (ML) to assess vascular age: parameter estimation and risk classification. We then summarize their role in developing new techniques to assess vascular ageing quickly and accurately. We discuss the methods used to validate ML-based markers, the evidence for their clinical utility, and key directions for future research. The review is complemented by case studies of the use of ML in vascular age assessment which can be replicated using freely available data and code.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612526PMC
http://dx.doi.org/10.1093/ehjdh/ztab089DOI Listing

Publication Analysis

Top Keywords

vascular ageing
12
machine learning
8
assess vascular
8
vascular age
8
vascular
5
leveraging potential
4
potential machine
4
learning assessing
4
assessing vascular
4
ageing state-of-the-art
4

Similar Publications

Background And Objectives: Lipid metabolism in older adults is affected by various factors including biological aging, functional decline, reduced physiologic reserve, and nutrient intake. The dysregulation of lipid metabolism could adversely affect brain health. This study investigated the association between year-to-year intraindividual lipid variability and subsequent risk of cognitive decline and dementia in community-dwelling older adults.

View Article and Find Full Text PDF

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

Background: Although Amyloid-beta and Tau are the hallmarks of Alzheimer's Disease (AD), other protein pathways such as endothelial dysfunction may be involved and may precede cognitive symptoms. Our objective was to characterize the cerebrospinal fluid (CSF) proteomic profiles focusing on cardiometabolic-related protein pathways in individuals on the AD spectrum.

Methods: We performed CSF and plasma-targeted proteomics (276 proteins) from 354 participants of the Brain Stress Hypertension and Aging Program (BSHARP), of which 8% had preclinical AD, and 24% had MCI due to AD.

View Article and Find Full Text PDF

Introduction: Mixed connective tissue disease (MCTD) patients often have myositis, however, myopathological and clinical data for MCTD are limited. Recent reports have shown that the pathology of MCTD myositis resembles that of immune-mediated necrotizing myopathy (IMNM), whereas earlier reports described perifascicular atrophy or inflammatory infiltrates predominantly in the perivascular region in MCTD myositis. We aim to describe the clinical and myopathological features of MCTD myositis.

View Article and Find Full Text PDF

Aging is a multi-organ disease, yet the traditional approach has been to study each organ in isolation. Such organ-specific studies have provided invaluable information regarding its pathomechanisms. However, an overall picture of the whole-body network (WBN) during aging is still incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!