Per- and polyfluoroalkyl substances (PFAS) are a large group of manmade chemicals that impose emerging environmental concerns. Among them, short-chain per- and polyfluorinated carboxylic acids represent an important subgroup used as building blocks of biologically active chemicals and functional materials. Some are also considered PFAS alternatives, and some could be byproducts of the physicochemical treatment of PFAS. However, little is known about the environmental fate of short-chain fluorinated carboxylic acids (FCAs) and their defluorination/transformation by microorganisms. To fill the knowledge gap, we investigated the structure-reactivity relationships in the aerobic defluorination of C-C FCAs by activated sludge communities. Four structures exhibited greater than 20% defluorination, with 3,3,3-trifluoropropionic acid being almost completely defluorinated. We further analyzed the defluorination/transformation pathways and inferred the structures susceptible to aerobic microbial defluorination. We also demonstrated that the defluorination was via cometabolism. The findings advance the fundamental understanding of aerobic microbial defluorination and help assess the environmental fate of PFAS. Since some short-chain PFAS, such as 3,3,3-trifluoropropionic acid, are the incomplete defluorination byproducts of advanced reduction processes, their defluorination by activated sludge communities sheds light on the development of cost-effective chemical-biological PFAS treatment train systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8936751 | PMC |
http://dx.doi.org/10.1021/acs.estlett.1c00511 | DOI Listing |
Environ Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.
View Article and Find Full Text PDFBMJ Open
December 2024
Rio Hortega, Valladolid University Hospital, Valladolid, Spain.
Objectives: Point-of-care testing available in prehospital settings requires the establishment of new medical decision points. The aim of the present work was to determine the cut-off of the lactate threshold that activates alert triggers for all-cause 2-day mortality.
Design: Multicentre, prospective, ambulance-based, observational study.
BMJ Open
December 2024
Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Background: The lactate albumin ratio (LAR), a simple prognostic marker used in intensive care units (ICUs), combines lactate and serum albumin levels to predict patient outcomes. Despite its potential, the predictive accuracy of the LAR remains insufficiently explored. This study aimed to assess the usefulness of the LAR in predicting mortality among patients in the ICU.
View Article and Find Full Text PDFBMJ Open
December 2024
Westmead Institute for Medical Research, Westmead, New South Wales, Australia
Introduction: Diabetic macular oedema (DMO), a serious ocular complication of diabetic retinopathy (DR), is a leading cause of vision impairment worldwide. If left untreated or inadequately treated, DMO can lead to irreversible vision loss and blindness. Intravitreal injections using antivascular endothelial growth factor (anti-VEGF) and laser are the current standard of treatment for DMO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!