Background: Obesity, the prevalence of which is increasing due to the lack of exercise and increased consumption of Westernized diets, induces various complications, including ophthalmic diseases. For example, obesity is involved in the onset of cataracts.
Methods: To clarify the effects and mechanisms of midodrine, an α1-adrenergic receptor agonist, in cataracts induced by obesity, we conducted various analytic experiments in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a rat model of obesity.
Results: Midodrine prevented cataract occurrence and improved lens clearance in OLETF rats. In the lenses of OLETF rats treated with midodrine, we observed lower levels of aldose reductase, tumor necrosis factor-α, and sorbitol, but higher levels of hexokinase, 5'-adenosine monophosphate-activated protein kinase-alpha, adenosine 5´-triphosphate, peroxisome proliferator-activated receptordelta, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, superoxide dismutase, and catalase.
Conclusion: The ameliorating effects of midodrine on cataracts in the OLETF obesity rat model are exerted via the following three mechanisms: direct inhibition of the biosynthesis of sorbitol, which causes cataracts; reduction of reactive oxygen species and inflammation; and (3) stimulation of normal aerobic glycolysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081306 | PMC |
http://dx.doi.org/10.3803/EnM.2021.1237 | DOI Listing |
Br J Pharmacol
January 2025
Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan.
Background And Purpose: Eukaryotic elongation factor 2 kinase (eEF2K) belongs to the Ca/calmodulin-dependent protein kinase family. We previously revealed that A484954, a selective eEF2K inhibitor, caused hypotensive and diuretic effects via the production of nitric oxide (NO) in spontaneously hypertensive rats. Otsuka Long-Evans Tokushima Fatty (OLETF) rats are hypertensive because of obesity and type 2 diabetes.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Public Health, Kagawa University Faculty of Medicine, Kagawa 761-0793, Japan.
, known as Aonori in Japan, is an edible alga species that is mass-cultivated in Japan. Supplementation with Aonori-derived biomaterials has been reported to enhance metabolic health in previous studies. This was an experimental study that evaluated the metabolic health effects of NBF2, a formula made of algal and -derived biomaterials, on obesity and type 2 diabetes (T2DM).
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan.
Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and , have garnered attention for their potential in obesity prevention.
View Article and Find Full Text PDFHeliyon
September 2024
Department of Physical Education, Chonnam National University, Gwangju, 61186, Republic of Korea.
Diabetes induces a range of macrovascular and microvascular changes, which lead to significant clinical complications. Although many studies have tried to solve the diabetic problem using drugs, it remains unclear. In this study, we investigated whether resistance exercise affects cardiovascular factors and inflammatory markers in diabetes.
View Article and Find Full Text PDFPLoS One
September 2024
Department of Urology, Faculty of Medical Science, University of Fukui, Fukui, Japan.
Purpose: Bladder dysfunction associated with type 2 diabetes mellitus (T2DM) includes urine storage and voiding disorders. We examined pathological conditions of the bladder wall in a rat T2DM model and evaluated the effects of the phosphodiesterase-5 (PDE-5) inhibitor tadalafil.
Materials And Methods: Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats and Long-Evans Tokushima Otsuka (LETO) rats were used as the T2DM and control groups, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!