This paper presents a detailed statistical analysis of experimental results of dynamic breakdown voltage and electrical breakdown time delay for xenon-filled diode. These quantities have a stochastic nature and they were measured in the cases when the xenon-filled diode was and was not exposed to a gamma radiation source, with exposure dose rate 7.7⋅10 C/(kg⋅s). The static breakdown voltage was estimated based on dynamic breakdown voltage as a function of voltage increase rate. The applicability of certain distributions to experimental dynamic breakdown voltage and electrical breakdown time delay data was also analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2022.110207 | DOI Listing |
LC-ESI-MS/MS is a preferred method for detecting and identifying metabolites, including those that are unpredictable from the genome, especially in basal metazoans like Cnidaria, which diverged earlier than bilaterians and whose metabolism is poorly understood. However, the unexpected appearance of a "ghost peak" for dopamine, which exhibited the same m/z value and MS/MS product ion spectrum during an analysis of Nematostella vectensis, a model cnidarian, complicated its accurate identification. Understanding the mechanism by which "ghost peaks" appear is crucial to accurately identify the monoamine repertoire in early animals so as to avoid misassignments.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany.
Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative.
View Article and Find Full Text PDFFEBS Open Bio
December 2024
Department of Cell Physiology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan.
Proper glycemic control is crucial for patient management in critical care, including perioperative care, and can influence patient prognosis. Blood glucose concentration determines insulin secretion and sensitivity and affects the intricate balance between the glucose metabolism. Human and other animal studies have demonstrated that perioperative drugs, including volatile anesthetics and intravenous anesthetics, affect glucose-stimulated insulin secretion (GSIS).
View Article and Find Full Text PDFCommun Biol
December 2024
Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
The KCNE family (KCNE1-5) is a group of single transmembrane auxiliary subunits for the voltage-gated K channel KCNQ1. The KCNQ1-KCNE complexes are crucial for numerous physiological processes including ventricular repolarization and K recycling in epithelial cells. We identified a new member of the KCNE family, "KCNE6", from zebrafish.
View Article and Find Full Text PDFCell Death Dis
December 2024
Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China.
Pancreatic β-cell apoptosis plays a crucial role in the development of type 2 diabetes. Cytochrome c oxidase subunit 6A2 (COX6A2) and Farnesoid X Receptor (FXR) have been identified in pancreatic β-cells, however, whether they are involved in β-cell apoptosis is unclear. Here, we sought to investigate the role of FXR-regulated COX6A2 in diabetic β-cell apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!