Developmental complex trauma is strongly associated with various psychiatric disorders in adulthood. Multiple lines of evidence have demonstrated that the amygdala-mPFC circuit regulates emotion and plays an important role in stress reactions. However, most studies on developmental trauma have mainly focused on neurological aspects in biological, behavioral, and structural changes with regard to a single stressor. In the present study, after applying complex stressors to the developmental phase, we would like to elucidate the functional changes in amygdala-mPFC circuit in the dopaminergic and serotonergic systems in the adult brain. Here, maternal separation and restraint stress were used to generate the trauma. The results showed that the body weights and corticosterone levels of animals exposed to developmental trauma decreased when compared to controls. In the neuroendocrine aspect, trauma leads to changes in proinflammatory cytokines, resulting in a decrease in IL-β and an increase in TNF-α. In the neuroPET studies, the developmental trauma group displayed a reduction in serotonergic and dopaminergic PET uptake in the amygdala and mPFC. Collectively, our results indicate that developmental trauma weakens the serotonergic and dopaminergic systems in the amygdala-mPFC circuit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.03.069 | DOI Listing |
Dev Cogn Neurosci
December 2024
Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
Early threat-associated cortical thinning may be interpreted as accelerated cortical development. However, non-adaptive processes may show similar macrostructural changes. Examining cortical thickness (CT) together with grey/white-matter contrast (GWC), a proxy for intracortical myelination, may enhance the interpretation of CT findings.
View Article and Find Full Text PDFCurr Res Neurobiol
July 2023
Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), University of Lyon 1, Lyon, France.
The network formed by the amygdala (AMG) and the medial Prefrontal Cortex (mPFC), at the interface between our internal and external environment, has been shown to support some important aspects of behavioral adaptation. Whether and how the anatomo-functional organization of this network evolved across primates remains unclear. Here, we compared AMG nuclei morphological characteristics and their functional connectivity with the mPFC in humans and macaques to identify potential homologies and differences between these species.
View Article and Find Full Text PDFAppl Psychophysiol Biofeedback
June 2023
University of Southern California, 3715 McClintock Ave., Los Angeles, CA, 90089, USA.
Previous research suggests that implicit automatic emotion regulation relies on the medial prefrontal cortex (mPFC). However, most of the human studies supporting this hypothesis have been correlational in nature. In the current study, we examine how changes in mPFC-left amygdala functional connectivity relate to emotional memory biases.
View Article and Find Full Text PDFDev Cogn Neurosci
February 2023
Department of Psychology, Harvard University, USA.
Earlier pubertal development appears to be one pathway through which childhood trauma contributes to psychopathology in adolescence. Puberty-related changes in neural networks involved in emotion processing, namely the amygdala-medial prefrontal (mPFC) circuit, may be a potential mechanism linking trauma and adolescent psychopathology. Our participants were 227 youth between 10 and 13 years of age who completed assessments of threat and deprivation-related experiences of adversity, pubertal stage, and internalizing and externalizing symptoms.
View Article and Find Full Text PDFMol Psychiatry
April 2023
Department of Psychiatry, University of Cambridge, Cambridge, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!