Diurnal patterns of methane flux are examined at a landfill in the Southeastern US. Methane fluxes are measured by an eddy covariance (EC) tower during representative one-week periods in three seasons: summer, fall, and winter. Measured methane fluxes are compared with atmospheric pressure, temporal variation of atmospheric pressure, wind shear velocity, and air temperature. Landfill methane flux varies significantly with shear velocity and temporal changes in atmospheric pressure when the atmosphere is neutral. Under unstable atmospheric conditions, air temperature correlates best with methane flux, which is corroborated with an independent dataset of tracer correlation method (TCM) measurements for similar measurement periods. These field data support a mathematical model previously proposed to describe atmospheric effects on methane flux from landfills. The field data also indicate significant diurnal methane flux variations, with daytime fluxes up to 23 times greater than nighttime fluxes. Because the majority of historical TCM measurements of whole landfill methane flux are between 12 pm and 6 pm at this landfill, when daily emissions are highest because of atmospheric effects, average diurnal fluxes might have been overestimated by as much as 73%. Methane emissions are most representative of diurnal average emissions when atmospheric stability is near-neutral, which occurs in the late morning (∼11 am) and in the early evening (∼5 pm) at this site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2022.03.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!