Purpose: To evaluate the effect of cigarette smoking on the color stability and surface roughness of heat-polymerized poly(methylmethacrylate) (PMMA) and computer-aided design and computer-aided manufacturing (CAD-CAM) PMMA denture base materials.

Methods: A total of 40 disc-shaped specimens (diameter 15 mm x thickness 2 mm) were divided into two groups according to their processing technique: Group CC, CAD-CAM PMMA; and Group HP, heat-polymerized PMMA. The specimens were exposed to cigarette smoke with 20 cigarettes daily for 5 days. Before the procedure, the color of the denture base was measured using a spectrophotometer in accordance with the Commission Internationale de I'Eclairage (CIE) color system. The surface roughness (Ra) of each sample was measured five times before and after exposure to smoke using a profilometer, and the mean roughness (Ra) values were calculated. The color change and surface roughness were statistically analyzed (P< 0.05).

Results: Greater discoloration was observed in the HP group, whereas the CC group showed clinically acceptable color change. Smoking increased the surface roughness of both denture base materials. However, the HP group had higher mean values than the CC group.

Clinical Significance: Denture base materials are susceptible to changes in color and surface roughness due to oral habits such as cigarette smoking. This in vitro study suggested that smoking can exacerbate the color changes and surface roughness of denture base materials, especially in heat-cured acrylic resins.

Download full-text PDF

Source

Publication Analysis

Top Keywords

surface roughness
28
denture base
24
base materials
16
cigarette smoking
12
roughness denture
12
color
8
smoking color
8
color stability
8
stability surface
8
roughness
8

Similar Publications

Design of a Co doped carbon Backbone with self-grown Au nanoparticles via a 'Triple Advantage' Strategy for sensitive dopamine detection.

J Colloid Interface Sci

January 2025

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University 071002 Baoding, PR China. Electronic address:

In this study, a Co doped polyhedral carbon skeleton (Co CN) was prepared by nitrogen carbonization using ZIF-67 as a precursor. The Co CN features a rough surface with excellent electrical conductivity, and the Co atoms exhibit unique catalytic properties. Based on these characteristics, we used Co CN as a carrier to load Au nanoparticles (NPs) onto its surface through the linkage and reduction effects of polyoxometalates (POMs).

View Article and Find Full Text PDF

The use of active packaging made from biodegradable polymers can contribute to the environment and to the food industry by increasing the shelf life of their products. This study aimed to produce chitosan-based films incorporated with the invertase enzyme (1, 2, 5, 9, and 10 %) as an alternative to avoid sucrose crystallization in the confectionery industry. The optimum activity of the invertase enzyme was observed at 55 °C and pH 5, thus, the films made with the film-forming solution adjusted to pH 5 and dried at 55 °C were compared with those without pH adjustment and dried at room temperature.

View Article and Find Full Text PDF

Surface coating nanoarchitectonics for optimizing cytocompatibility and antimicrobial activity: The impact of hyaluronic acid positioning as the outermost layer.

Int J Biol Macromol

January 2025

Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, USA. Electronic address:

Polyelectrolyte multilayers (PEMs) based on hyaluronic acid (HA) and poly (diallyldimethylammonium chloride) (PDDA) were deposited on oxidized polystyrene (PS) via the layer-by-layer (LbL) method. The X-ray photoelectron spectroscopy (XPS) confirmed the PEM deposition on PS, and atomic force microscopy (AFM) indicated that the surface roughness of PS also increased after PEM deposition. The PEMs significantly enhanced PS wettability, reducing the contact angle from 73° on PS to 24° on PDDA-terminated (PDDA/HA) PEM (2.

View Article and Find Full Text PDF

Background Toothbrush manufacturers commonly use bristle materials such as nylon, polybutylene terephthalate, polypropylene, polyethylene terephthalate, boar hair, bamboo, carbon fiber, silicone, polylactic acid, or their modifications such as Curen. Nylon filaments have long been demonstrated to be durable and are widely used, but not much is known regarding the performance of Curen filaments compared to nylon filaments. This in vitro study compared the stiffness, abrasion potential, abrasion resistance, and bristle surface changes of Curen and nylon filaments.

View Article and Find Full Text PDF

Acid fracturing fluids can effectively improve the microporous structure of coal, thereby enhancing the permeability of coal seam and the efficiency of gas drainage. To explore the effects of acid fracturing fluids on the pore structure modification of coal samples from different coal ranks, hydrochloric acid-based acid fracturing fluids were prepared and used to soak four types of medium to high-rank coal in an experiment. High-pressure mercury intrusion and liquid nitrogen adsorption techniques results demonstrated that the acid fracturing fluid can effectively alter the pore structure of coal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!