Nanoengineering for Mechanobiology "N4M-20".

Eur Biophys J

Istituto Officina dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology University of Perugia, 06123, Perugia, Italy.

Published: March 2022

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-022-01596-yDOI Listing

Publication Analysis

Top Keywords

nanoengineering mechanobiology
4
mechanobiology "n4m-20"
4
nanoengineering
1
"n4m-20"
1

Similar Publications

This editorial introduces the contents of Volume 16, Issue 6 of , the official journal of the International Union for Pure and Applied Biophysics (IUPAB). Highlights of the Issue include an invited review article by David Alsteens, the winner of the 2024 Michèle Auger Award for Young Scientists' Independent Research and a Special Issue Focus involving a series of articles based on topics addressed at the 7th Nanoengineering for Mechanobiology Symposium 2024. The broad scope of articles and the geographically widespread locations of the contributing authors of these and other reviews in the Issue mirror the goals of IUPAB, namely to organize worldwide advancements, co-operation, communication, and education in biophysics.

View Article and Find Full Text PDF

Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.

Article Synopsis
  • Recent advancements in nanotechnology have led to the development of compact and efficient terahertz (THz) devices, utilizing structures like nano-thick heterostructures and metasurfaces for better control over THz wave generation and modulation.
  • These innovations have significantly improved THz spectroscopy, imaging, and bio-applications, resulting in enhanced resolution and sensitivity for various uses.
  • The review covers the latest generation and modulation techniques, explores novel biosensing methods, and discusses future challenges and trends in this evolving field, aiming to provide insights for the development of next-generation THz technologies.
View Article and Find Full Text PDF

Myosin II tension sensors visualize force generation within the actin cytoskeleton in living cells.

J Cell Sci

October 2024

Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA.

Article Synopsis
  • Nonmuscle myosin II (NMII) is crucial for various cellular activities, including cell division and muscle contraction, but measuring the forces it generates in live cells has been challenging.
  • A new FRET-based tension sensor has been developed to directly measure the forces associated with NMII along the actin network, using advanced imaging techniques like FLIM-FRET.
  • The findings reveal that the forces produced by NMII isoform B (NMIIB) can vary significantly in different locations and times within the cell, suggesting this sensor could help understand the dynamics of cytoskeletal contractility in various cellular processes.
View Article and Find Full Text PDF

The development of biomaterials capable of regulating cellular processes and guiding cell fate decisions has broad implications in tissue engineering, regenerative medicine, and cell-based assays for drug development and disease modeling. Recent studies have shown that three-dimensional (3D) nanoscale physical cues such as nanotopography can modulate various cellular processes like adhesion and endocytosis by inducing nanoscale curvature on the plasma and nuclear membranes. Two-dimensional (2D) biochemical cues such as protein micropatterns can also regulate cell function and fate by controlling cellular geometries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!