Deep learning approaches process data in a layer-by-layer way with intermediate (or latent) features. We aim at designing a general solution to optimize the latent manifolds to improve the performance on classification, segmentation, completion and/or reconstruction through probabilistic models. This paper proposes a variational inference model which leads to a clustered embedding. We introduce additional variables in the latent space, called nebula anchors, that guide the latent variables to form clusters during training. To prevent the anchors from clustering among themselves, we employ the variational constraint that enforces the latent features within an anchor to form a Gaussian distribution, resulting in a generative model we refer as Nebula Variational Coding (NVC). Since each latent feature can be labeled with the closest anchor, we also propose to apply metric learning in a self-supervised way to make the separation between clusters more explicit. As a consequence, the latent variables of our variational coder form clusters which adapt to the generated semantic of the training data, e.g., the categorical labels of each sample. We demonstrate experimentally that it can be used within different architectures designed to solve different problems including text sequence, images, 3D point clouds and volumetric data, validating the advantage of our proposed method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2022.3160539 | DOI Listing |
Mem Cognit
January 2025
École de Psychologie, Université de Moncton, Moncton, NB, E1A 3E9, Canada.
In short-term ordered recall tasks, phonological similarity impedes item and order recall, while semantic similarity benefits item recall with a weak or null effect on order recall. Ishiguro and Saito recently suggested that these contradictory findings were due to an inadequate assessment of semantic similarity. They proposed a novel measure of semantic similarity based on the distance between items in a three-dimensional space composed of the semantic dimensions of valence, arousal, and dominance.
View Article and Find Full Text PDFJ Imaging
January 2025
Department of Ophthalmology, General University Hospital of Alexandroupolis, 68131 Alexandroupolis, Greece.
Blink detection is considered a useful indicator both for clinical conditions and drowsiness state. In this work, we propose and compare deep learning architectures for the task of detecting blinks in video frame sequences. The first step is the training and application of an eye detector that extracts the eye regions from each video frame.
View Article and Find Full Text PDFJ Imaging
January 2025
Istituto di Scienze Applicate e Sistemi Intelligenti (ISASI), Consiglio Nazionale delle Ricerche (CNR), DHITECH, Campus Università del Salento, Via Monteroni s.n., 73100 Lecce, Italy.
Despite significant advancements in the automatic classification of skin lesions using artificial intelligence (AI) algorithms, skepticism among physicians persists. This reluctance is primarily due to the lack of transparency and explainability inherent in these models, which hinders their widespread acceptance in clinical settings. The primary objective of this study is to develop a highly accurate AI-based algorithm for skin lesion classification that also provides visual explanations to foster trust and confidence in these novel diagnostic tools.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan.
Mathematical modeling has been utilized to explain biological pattern formation, but the selections of models and parameters have been made empirically. In the present study, we propose a data-driven approach to validate the applicability of mathematical models. Specifically, we developed methods to automatically select the appropriate mathematical models based on the patterns of interest and to estimate the model parameters.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
School of Physics, The University of Sydney, Sydney, Australia.
Clustering short text is a difficult problem, owing to the low word co-occurrence between short text documents. This work shows that large language models (LLMs) can overcome the limitations of traditional clustering approaches by generating embeddings that capture the semantic nuances of short text. In this study, clusters are found in the embedding space using Gaussian mixture modelling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!