Coamorphous systems comprising small molecules are emerging as counterparts to polymeric solid dispersions. However, the glass transition temperatures (s) of coamorphous materials are relatively low because of the lack of polymeric carriers with higher s. This study aimed to investigate the applicability of lactose (LAC) as an antiplasticizing coformer to a coamorphous system. Diphenhydramine hydrochloride (DPH) was selected as a model drug ( = 16 °C). Differential scanning calorimetry showed a comelting point in addition to a decrease in the neat melting points depending on the composition of the physical mixtures, suggesting that the mixture of DPH-LAC was eutectic. The melting point of the eutectic mixture was calculated according to the Schröder-van Laar equation. The heat of fusion of the eutectic mixture was maximized at a 70:30 molar ratio of DPH to LAC; at this point, the melting peaks of the pure components disappeared. The heat flow profiles following the melting and cooling of DPH-LAC physical mixtures at the ratios from 10:90 to 90:10 showed a single , suggesting the formation of a coamorphous system. Lactose showed a of over 100 °C, and the of DPH increased with the molar ratio of LAC; it was 84 °C at a 10:90 molar ratio of DPH to LAC. The Raman image indicated the formation of a homogeneous dispersion of DPH and LAC in the coamorphous system. Peak shifts in the infrared spectra indicated the presence of intermolecular interactions between the amino group of DPH and the hydroxyl group of LAC. Principal component analysis of the infrared spectra revealed a significant change at the 70:30 molar ratio of DPH to LAC, which was in agreement with the results of the thermal analysis. A stability test at 40 °C revealed rapid crystallization of the supercooled liquid DPH. The coamorphous samples containing 10-50% of LAC remained in an amorphous state for 21 days, and no crystallization was observed for the samples containing >60% of LAC for 28 days. The relatively lower (less than 40 °C) of the coamorphous system containing 10-50% of LAC might have caused crystallization during storage. These findings indicate that LAC, which is a safe and widely used pharmaceutical excipient, can be applied to coamorphous systems as an antiplasticizing coformer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.2c00057DOI Listing

Publication Analysis

Top Keywords

coamorphous system
20
molar ratio
16
dph lac
16
ratio dph
12
lac
11
coamorphous
9
system lactose
8
diphenhydramine hydrochloride
8
glass transition
8
coamorphous systems
8

Similar Publications

Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine.

Mol Pharm

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.

View Article and Find Full Text PDF

Drug-Phospholipid Co-Amorphous Formulations: The Role of Preparation Methods and Phospholipid Selection.

Pharmaceutics

December 2024

Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.

: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.

View Article and Find Full Text PDF

: Supersaturating drug delivery systems (SDDSs) have gained significant attention as a promising strategy to enhance the solubility and bioabsorption of Biopharmaceutics Classification System (BCS) II drugs. To overcome challenges associated with polymer-based amorphous SDDS (aSDDS), coamorphous (CAM) systems have emerged as a viable alternative. Among them, "drug-drug" CAM (ddCAM) systems show considerable potential for combination drug therapy.

View Article and Find Full Text PDF

This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.

View Article and Find Full Text PDF

The coamorphous formulations have attracted increasing interest due to enhanced solubility and bioavailability, together with synergistic pharmacological effects. In this study, a ternary coamorphous system of polyphenols was successfully prepared, wherein baicalein (Bai) and resveratrol (Res) were constructed into a single-phase coamorphous system mediated by piperine (Pip). FTIR and ss C NMR spectra together with quantum chemical calculation and molecular dynamics simulation suggested Pip as a molecular bridge connected Bai and Res molecules through π-π stacking and hydrogen bonding interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!