Arginine methylations can regulate important biological processes and affect many cellular activities, and the enzymes that catalyze the methylations are protein arginine methyltransferases (PRMTs). The biological consequences of arginine methylations depend on the methylation states of arginine that are determined by the PRMT's product specificity. Nevertheless, it is still unclear how different PRMTs may generate different methylation states for the target proteins. PRMT7 is the only known member of type III PRMT that produces monomethyl arginine (MMA) product. Interestingly, its E181D and E181D/Q329A mutants can catalyze, respectively, the formation of asymmetrically dimethylated arginine (ADMA) and symmetrically dimethylated arginine (SDMA). The reasons as to why the mutants have the abilities to add the second methyl group and E181D (E181D/Q329A) has the unique product specificity in generating ADMA (SDMA) have not been understood. Here, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) and potential of mean force (PMF) free-energy simulations are performed for the E181D and E181D/Q329A mutants to understand the origin for their ability to generate, respectively, ADMA and SDMA. The simulations show that the free-energy barrier for adding the second methyl group to MMA in E181D (E181D/Q329A) to produce ADMA (SDMA) is considerably lower than the corresponding barriers in wild type and E181D/Q329A (wild type and E181D), consistent with experimental observations. Some important factors that contribute to the change of the activity and product specificity due to the E181D and E181D/Q329A mutations are identified based on the data from the simulations and analysis. It is shown that the transferable methyl group (from SAM) and N (the nitrogen atom that is methylated in the substrate MMA) can only form good near-attack conformations in the E181D reaction state for the methyl transfer (not in wild type and E181D/Q329A), while the transferable methyl group and N (the nitrogen atom that is not methylated in the substrate MMA) can only form good near-attack conformations in E181D/Q329A (not in wild type and E181D). The results suggest that the steric repulsions in the reaction state between the methyl group on MMA and active-site residues (e.g., Q329) and the release of such repulsions (e.g., from the Q329A mutation) may play an important role in generating specific near-attack conformations for the methyl transfer and controlling the product specificity for the mutants. The general principle identified in this work for PRMT7 is expected to be useful for understanding the activity and product specificity of other PRMTs as well.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.1c01219DOI Listing

Publication Analysis

Top Keywords

product specificity
24
e181d e181d/q329a
24
methyl group
20
wild type
16
adma sdma
12
near-attack conformations
12
e181d
9
e181d/q329a
9
arginine
8
e181d/q329a mutations
8

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world.

View Article and Find Full Text PDF

Robust discrimination between closely related species of salmon based on DNA fragments.

Anal Bioanal Chem

January 2025

Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.

Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.

View Article and Find Full Text PDF

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology

January 2025

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.

Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.

View Article and Find Full Text PDF

A 2024 Update on US FDA Implementation of Partial Area Under the Curve Into Bioavailability and Bioequivalence Assessments.

Clin Pharmacol Ther

January 2025

Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.

Comparisons of maximum drug concentration (C) and total area under the concentration vs. time curve (AUC) may be inadequate for bioavailability (BA)/bioequivalence (BE) assessments in cases where the shape of the pharmacokinetic (PK) profile of a drug impacts the clinical performance. In such cases, partial area under the concentration vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!