Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (O) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FPcZn complexes, = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered FPcZn. The O production ability of FPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV-vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of FPcZn and FPcZn in the presence of redox-active TEMP lowered O production, DMA was a suitable O trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO-supported FPcZn, FPcZn|TiO. Phenol photo-oxidation by O, followed by its electrochemical reduction, defines a redox cycle, the O production having been found to depend on the value of and structural features of the supported complexes. Consistent with solution studies, FPcZn was found to be the most efficient O generator. The insights on reactivity testing and structural-activity relationships obtained may be useful for designing efficient and robust sensors and for other O-related applications of FPcZn.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c04357DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
8
fpczn
8
fpczn complexes
8
correlation fluorination
4
fluorination degree
4
degree perfluorinated
4
perfluorinated zinc
4
zinc phthalocyanines
4
phthalocyanines singlet
4
oxygen generation
4

Similar Publications

Preparation of photodynamic-controlled release packaging for pork preservation and its visualization.

Food Chem

January 2025

Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:

The current study aimed to synthesize a ZIF-8 metal-organic framework loaded with the Rose Bengal (ZIF-8@RB) as the photodynamic sterilization ingredient to address the uncontrolled release of active ingredients in packaging films. The photodynamic controlled release packaging film was then prepared using a PVDF polymer matrix via uniaxial electrospinning. The microstructure, particle size, excitation wavelength, and singlet oxygen yield of ZIF-8@RB were examined.

View Article and Find Full Text PDF

Dual Pathways of Photorelease Carbon Monoxide via Photosensitization for Tumor Treatment.

J Am Chem Soc

January 2025

State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.

Carbon monoxide (CO) gas therapy, as an emerging therapeutic strategy, is promising in tumor treatment. However, the development of a red or near-infrared light-driven efficient CO release strategy is still challenging due to the limited physicochemical characteristics of the photoactivated carbon monoxide-releasing molecules (photoCORMs). Here, we discovered a novel photorelease CO mechanism that involved dual pathways of CO release via photosensitization.

View Article and Find Full Text PDF

Photooxidation and Cleavage of Ethynylated 9,10-Dimethoxyanthracenes with Acid-Labile Ether Bonds.

J Org Chem

January 2025

Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts, 02155, United States.

This paper describes a series of 12 9,10-dimethoxyanthracene derivatives functionalized with a range of electronically diverse ethynyl substituents at the 2 and 6 positions, aimed at tuning their optoelectronic properties and reactivity with singlet oxygen (O). Optical spectroscopy, cyclic voltammetry, and density functional theory calculations reveal that the ethynyl groups decrease the HOMO-LUMO gaps in these acenes. Notably, bis(dimethylanilineethynyl) substituents increase the wavelength of absorbance onset by over 60 nm compared to 9,10-dimethoxyanthracene (DMA).

View Article and Find Full Text PDF

Decreasing the aggregation of photosensitizers to facilitate energy transfer for improved photodynamic therapy.

Nanoscale

January 2025

Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.

The mode of energy transfer between photosensitizers and oxygen determines the yield of singlet oxygen (O), crucial for photodynamic therapy (PDT). However, the aggregation of photosensitizers promotes electron transfer while inhibiting pure energy transfer, resulting in the generation of the hypotoxic superoxide anion (O) and consumption of substantial oxygen. Herein, we achieve the reduction of the aggregation of photosensitizers to inhibit electron transfer through classical chemical crosslinking, thereby boosting the production of O.

View Article and Find Full Text PDF

Adverse drug reactions (ADR) remain a challenge in modern healthcare, particularly given the increasing complexity of therapeutics. WHO's definition of an adverse drug reaction as a response to a drug that is noxious and unintended and occurs at doses normally used in man for the prophylaxis, diagnosis or therapy of disease, or for modification of physiological function. This definition underscores the importance of monitoring and mitigating unintended drug effects, particularly for widely used medications like valproic acid (VPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!