Endothelial dysfunction during diabetes has been previously reported to be at least in part attributed to increased oxidized low‑density lipoprotein (oxLDL) levels mediated by high glucose (HG) levels. Endothelial inflammation increases the adhesiveness of monocytes to the endothelium in addition to increasing vascular permeability, promoting diabetic atherogenesis. In a previous study, it was reported that oxLDL treatment induced nucleotide‑binding domain and leucine‑rich repeat containing family, pyrin domain‑containing 3 inflammasome activation in endothelial cells (ECs) under HG conditions, in a manner that could be effectively reversed by rosmarinic acid. However, it remains unclear whether oxLDL‑mediated inflammasome activation can regulate the interaction between monocytes and ECs. The effects of oxLDL‑mediated inflammasome activation on endothelial permeability under HG conditions, in addition to the effects of rosmarinic acid on these oxLDL‑mediated processes, also remain poorly understood. Therefore, the present study aimed to elucidate the mechanisms involved in oxLDL‑induced endothelial permeability and monocyte diapedesis under HG conditions, in addition to the potential effects of rosmarinic acid. ECs were treated with oxLDL under HG conditions in the presence or absence of ROS scavengers mitoTEMPO and NAC, p38 inhibitor SB203580, FOXO1 inhibitor AS1842856 or transfected with the TXNIP siRNA, before protein expression levels of intercellular adhesion molecule 1 (ICAM‑1), vascular cell adhesion molecule‑1 (VCAM‑1), phosphorylated vascular endothelial‑cadherin (VE‑cadhedrin), VE‑cadherin and zonula occludens‑1 (ZO‑1) were measured by western blotting. In addition, adhesion assay and Transwell assays were performed. oxLDL was found to significantly increase the expression of ICAM‑1 and VCAM‑1 in ECs under HG conditions whilst also enhancing the adhesion of monocytes to ECs. This was found to be dependent on the reactive oxygen species (ROS)/p38 MAPK/forkhead box O1 (FOXO1)/thioredoxin interacting protein (TXNIP) signaling pathway. In addition, oxLDL‑stimulated ECs under HG conditions exhibited increased phosphorylated VE‑cadherin protein levels and decreased ZO‑1 protein expression levels compared with those in untreated ECs, suggesting increased endothelial permeability. Furthermore, monocyte transmigration through the endothelial monolayer was significantly increased by oxLDL treatment under HG conditions. These oxLDL‑mediated effects under HG conditions were also demonstrated to be dependent on this ROS/p38 MAPK/FOXO1/TXNIP signaling pathway. Subsequently, rosmarinic acid treatment significantly reversed oxLDL‑induced overexpression of adhesion molecules and monocyte‑EC adhesion, oxLDL‑induced endothelial junction hyperpermeability and monocyte transmigration through the endothelial monolayer under HG conditions, in a dose‑dependent manner. These results suggest that rosmarinic acid can exert a protective effect against oxLDL‑mediated endothelial dysfunction under HG conditions by reducing the interaction between monocytes and ECs in addition to preventing monocyte diapedesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989427PMC
http://dx.doi.org/10.3892/ijmm.2022.5125DOI Listing

Publication Analysis

Top Keywords

rosmarinic acid
24
interaction monocytes
12
monocyte diapedesis
12
inflammasome activation
12
ecs conditions
12
monocytes ecs
12
endothelial permeability
12
endothelial
11
conditions
11
endothelial cells
8

Similar Publications

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

Changyanning tablet alleviates Crohn's disease by inhibiting GPX4-mediated ferroptosis.

J Ethnopharmacol

January 2025

Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China. Electronic address:

Ethnopharmacological Relevance: Changyanning tablets (CYN) are a marketed traditional Chinese medicine composed of Diijincao (Euphorbia humifusa Willd.), Jinmaoercao (Hedyotis chrysotricha (Palib.) Merr.

View Article and Find Full Text PDF

Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid.

ACS Appl Bio Mater

January 2025

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.

Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.

View Article and Find Full Text PDF

The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender's potential to protect neurons is based on its calming, anti-stress properties, which increase the brain's resistance to neurodegeneration. Although lavender is not a traditional medicinal plant in Ukraine, it is increasingly recognised for its medicinal properties and is widely cultivated in the country.

View Article and Find Full Text PDF

Gastrointestinal nematodes (GINs) inflict significant economic losses on sheep and goat farming globally due to reduced productivity and the development of anthelmintic resistance. Sustainable control strategies are urgently needed including the exploration of medicinal plants as safer alternatives to chemical anthelmintics. This genus of plants is used for anti-inflammatory, antioxidant, and antimicrobial activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!