The dynamic genetic architecture of early childhood BMI.

Nat Metab

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.

Published: March 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969174PMC
http://dx.doi.org/10.1038/s42255-022-00546-4DOI Listing

Publication Analysis

Top Keywords

dynamic genetic
4
genetic architecture
4
architecture early
4
early childhood
4
childhood bmi
4
dynamic
1
architecture
1
early
1
childhood
1
bmi
1

Similar Publications

Molecular Epidemiology of Type F Among Diarrheal Patients and Virulence-Resistance Dynamics - 11 Provinces, China, 2024.

China CDC Wkly

January 2025

Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.

Introduction: Type F () represents a significant pathogen in human gastrointestinal diseases, primarily through its gene encoding enterotoxin (CPE). This investigation examined the prevalence, antimicrobial resistance patterns, and genetic characteristics of Type F within the Chinese population.

Methods: The study analyzed 2,068 stool samples collected from 11 provincial hospitals in 2024.

View Article and Find Full Text PDF

A genetically encoded fluorescent biosensor for sensitive detection of cellular c-di-GMP levels in .

Front Chem

January 2025

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China.

Cyclic di-guanosine monophosphate (c-di-GMP) acts as a second messenger regulating bacterial behaviors including cell cycling, biofilm formation, adhesion, and virulence. Monitoring c-di-GMP levels is crucial for understanding these processes and designing inhibitors to combat biofilm-related antibiotic resistance. Here, we developed a genetically encoded biosensor, cdiGEBS, based on the transcriptional activity of the c-di-GMP-responsive transcription factor MrkH.

View Article and Find Full Text PDF

Molecular dynamics of chemotactic signalling orchestrates dental pulp stem cell fibrosis during aging.

Front Cell Dev Biol

January 2025

Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China.

Aging often triggers dental pulp fibrosis, resulting in clinical repercussions such as increased susceptibility to dental infections, compromised tooth vitality, and reduced responsiveness to dental interventions. Despite its prevalence, the precise molecular mechanisms underlying this condition remains unclear. Leveraging single-cell transcriptome analysis from both our own and publicly available datasets, we identified Ccrl2 macrophages as particularly vulnerable during the early stages of aging.

View Article and Find Full Text PDF

Background: The initial colonization of the infant gut is a complex process that defines the foundation for a healthy microbiome development. is one of the first colonizers of newborns' gut, playing a crucial role in the healthy development of both the host and its microbiome. However, exhibits significant genomic diversity, with subspecies ( subsp.

View Article and Find Full Text PDF

Numerous regulators of cardiomyocyte (CM) proliferation have been identified, yet how they coordinate during cardiac development or regeneration is poorly understood. Here, we developed a computational model of the CM proliferation regulatory network to obtain key regulators and systems-level understanding. The model defines five modules (DNA replication, mitosis, cytokinesis, growth factor, Hippo pathway) and integrates them into a network of 72 nodes and 88 reactions that correctly predicts 73 of 78 (93.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!