Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
FA esters of hydroxy FAs (FAHFAs) are lipokines with extensive structural and regional isomeric diversity that impact multiple physiological functions, including insulin sensitivity and glucose homeostasis. Because of their low molar abundance, FAHFAs are typically quantified using highly sensitive LC-MS/MS methods. Numerous relevant MS databases house in silico-spectra that allow identification and speciation of FAHFAs. These provisional chemical feature assignments provide a useful starting point but could lead to misidentification. To address this possibility, we analyzed human serum with a commonly applied high-resolution LC-MS untargeted metabolomics platform. We found that many chemical features are putatively assigned to the FAHFA lipid class based on exact mass and fragmentation patterns matching spectral databases. Careful validation using authentic standards revealed that many investigated signals provisionally assigned as FAHFAs are in fact FA dimers formed in the LC-MS pipeline. These isobaric FA dimers differ structurally only by the presence of an olefinic bond. Furthermore, stable isotope-labeled oleic acid spiked into human serum at subphysiological concentrations showed concentration-dependent formation of a diverse repertoire of FA dimers that analytically mimicked FAHFAs. Conversely, validated FAHFA species did not form spontaneously in the LC-MS pipeline. Together, these findings underscore that FAHFAs are endogenous lipid species. However, nonbiological FA dimers forming in the setting of high concentrations of FFAs can be misidentified as FAHFAs. Based on these results, we assembled a FA dimer database to identify nonbiological FA dimers in untargeted metabolomics datasets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034316 | PMC |
http://dx.doi.org/10.1016/j.jlr.2022.100201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!