Under endoplasmic reticulum (ER) stress, tumor plays multifaceted roles in endothelial cell dysfunction through secreting exosomal miRNAs. However, for the head and neck squamous cell carcinoma (HNSCC), it is still unclear about the impact of ER-stressed HNSCC cell derived exosomes on vascular endothelial cells. To address this gap, herein, systemic research was conducted including isolation and characterization of ER-stressed HNSCC cell (HN4 cell line as an model) derived exosomes, identification of regulatory exosomal miRNAs, target exploration and downstream signaling pathway investigation of exosomal miRNAs in human umbilical vein endothelial cell (HUVEC). ER-stressed HN4 cell-derived exosomes inhibited angiogenesis and migration of HUVEC cells . Furthermore, RNA-seq analysis demonstrated that miR-424-5p was highly upregulated in ER-stressed HN4 cell-derived exosomes. Through matrigel tube formation and transwell assays of HUVEC cells, miR-424-5p displayed great capabilities on inhibiting angiogenesis and migration. Finally, based on western blot and luciferase reporter, it was demonstrated that LAMC1 is the target of miR-424-5p which could inhibit the angiogenesis and migration of HUVEC cells by repressing the LAMC1-mediated Wnt/β-catenin signaling pathway. ER-stressed HNSCC cell-induced exosomal miR-424-5p inhibits angiogenesis and migration of HUVEC cells through LAMC1-mediated Wnt/β-catenin signaling pathway. This study offers a new insight for understanding the complicated mechanism behind ER-stress induced anti-angiogenesis of HNSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943634 | PMC |
http://dx.doi.org/10.1177/09636897221083549 | DOI Listing |
J Nanobiotechnology
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China. Electronic address:
Chronic wound healing is often hindered by long-term inflammation and redox imbalance. Herbal medicine, with its rich medicinal components such as polysaccharides, flavonoids, phenolic acids, and small-molecule nutrients, has gained attention for its anti-inflammatory and antioxidant properties. Xanthium strumarium (XS) is a potent anti-inflammatory herb that has shown promise in treating conditions like rhinitis and may have specific benefits for chronic skin wounds.
View Article and Find Full Text PDFInt J Cardiol
January 2025
Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province 510630, China. Electronic address:
Background: Identifying factors mediating adipose-derived stem cells (ADSCs)-induced endothelial cell angiogenesis in hypoxic skin flap tissue is critical for reconstruction. While the paracrine action of VEGF by adipose-derived stem cells (ADSCs) is established in promoting endothelial cell angiogenesis, the role of FGF2 and its regulatory mechanisms in ADSCs paracrine secretion remains unclear.
Methods: We induced hypoxia and examined the expression level of FGF2 in ADSCs using ELISA, qRT-PCR, and western blotting.
Front Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Life (Basel)
January 2025
Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
Angiogenesis plays a critical role in osteosarcoma (OS) growth and metastasis. While nerve growth factor (NGF) is implicated in cancer progression, its role in OS angiogenesis remains unclear. This study explored NGF's effects on angiogenesis and the underlying molecular mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!