Peptides that contain difluorostatine and difluorostatone residues have been shown to be potent inhibitors of the aspartyl protease renin. The readily hydrated fluoro ketone is proposed to mimic the tetrahedral intermediate that forms during the enzyme-catalyzed hydrolysis of a peptidic bond. It is suggested that the sp3-hybridized ketal acts as a transition-state analogue renin inhibitor. The fluoro ketone is shown to be a much more effective inhibitor than the corresponding nonfluorinated ketone, which acts as a pseudosubstrate. More lipophilic side chains at the P1 site can enhance the inhibitory potency of the difluorostatine analogue, but this cannot be demonstrated in the difluorostatone series. Additionally, high renin specificity has been shown for a difluorostatone-containing peptide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm00160a048 | DOI Listing |
Biochemistry
April 1992
Department of Biochemistry, University of Alberta, Edmonton, Canada.
Difluorostatine- and difluorostatone-containing peptides have been evaluated as potent inhibitors of penicillopepsin, a member of the aspartic proteinase family of enzymes. Isovaleryl-Val-Val-StaF2NHCH3 [StaF2 = (S)-4-amino-2,2-difluoro-(R)-3-hydroxy-6-methylheptanoic acid] and isovaleryl-Val-Val-StoF2NHCH3 [StoF2 = (S)-4-amino-2,2-difluoro-3-oxo-6-methylheptanoic acid] have measured Ki's of 10 x 10(-9) and 1 x 10(-9) M, respectively, with this fungal proteinase. The StoF2-containing peptide binds 32-fold more tightly to the enzyme than the analogous peptide containing the non-fluorinated statine ethyl ester.
View Article and Find Full Text PDFPeptides that contain difluorostatine and difluorostatone residues have been shown to be potent inhibitors of the aspartyl protease renin. The readily hydrated fluoro ketone is proposed to mimic the tetrahedral intermediate that forms during the enzyme-catalyzed hydrolysis of a peptidic bond. It is suggested that the sp3-hybridized ketal acts as a transition-state analogue renin inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!