The oxidation of ethylene catalyzed by manganese and technetium oxo complexes of the type MOL (M = Tc, Mn, and L = O, Cl, F, OH, Br, I) on both singlet and triplet potential energy surfaces (PESs) have been studied. All molecular structures were stable on the singlet PES except for the formation of the dioxylate intermediate for the MnOL (L = O, Cl, F, OH, Br, I) catalyzed pathway. Frontier molecular orbital calculations showed that electrons flow from the HOMO of ethylene into the LUMO of the metal-oxo complex for all complexes studied except for MOL (M = Tc, Mn, and L = O) where the vice versa occurs. In the reaction of both TcOL and MnOL (L = O, Cl, F, OH, Br, I) with ethylene, it was observed that the formation of the dioxylate intermediate along the [3 + 2] addition pathway on the singlet reaction surface is both kinetically and thermodynamically favorable over its formation via the [2 + 2] pathway. Furthermore, it was observed that TcO and MnO catalyzed pathways exclusively form diols on the singlet PES. The formation of epoxides on the singlet surface is kinetically favorable through the [2 + 1] and [2 + 2] channel for the MnOL (L = F, Cl, Br, I, OH) and TcOL (L = F, Cl, Br, I, OH) catalyzed surfaces respectively. In all cases, the TcOL complexes were found to be polar compared to the MnOL complexes. The MnO (singlet) and MnOF (singlet) are the best catalysts for the exclusive formation of the diols and epoxides respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-022-05092-0 | DOI Listing |
Soft Matter
January 2025
Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, United States.
Solid-state polymer electrolytes (SPEs) are increasingly favored over liquid electrolytes for emerging energy storage devices due to their safety features, enhanced stability, and multifunctionality. Minor solvents (such as water) are often introduced unintentionally or intentionally into SPEs. Although it can significantly affect SPEs' electrochemical and mechanical properties, the fundamental role of such solvent content has rarely been studied.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China.
Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li transport pathways at the clay-PEO interfaces due to their varied structural configurations.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany.
Carbon-fiber-reinforced composites of ultra-high-molecular-weight polyethylene (UHMWPE) are not easily prepared because of their high viscosity, although they can be advantageous in advanced engineering applications due to their superior mechanical properties in combination with their low specific weight and versatility. Short polyacrylonitrile-based carbon-fiber-reinforced UHMWPE composites with fiber contents of 5, 10, and 15 wt.% could easily be prepared using in situ ethylene polymerization.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania.
With the growing interest in nanofibers and the urgent need to address environmental concerns associated with plastic waste, there is an increasing focus on using recycled materials to develop advanced healthcare solutions. This study explores the potential of recycled poly(ethylene terephthalate) (PET) nanofibers, functionalized with copper-enhanced alginate, for applications in wound dressings. Nanofibers with desirable antimicrobial properties were developed using chemical recycling and electrospinning techniques, offering a sustainable and effective option for managing wound infections and promoting healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!