Topological Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic crystal.

Nat Mater

Institute of Theoretical and Applied Physics, School of Physical Science and Technology and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China.

Published: April 2022

Gauge fields play a major role in understanding quantum effects. For example, gauge flux insertion into single unit cells is crucial towards detecting quantum phases and controlling quantum dynamics and classical waves. However, the potential of gauge fields in topological materials studies has not been fully exploited. Here, we experimentally demonstrate artificial gauge flux insertion into a single plaquette of a sonic crystal with a gauge phase ranging from 0 to 2π. We insert the gauge flux through a three-step process of dimensional extension, engineering a screw dislocation and dimensional reduction. Additionally, the single-plaquette gauge flux leads to cyclic spectral flows across multiple bandgaps that manifest as topological boundary states on the plaquette and emerge only when the flux-carrying plaquette encloses the Wannier centres. We termed this phenomenon as the topological Wannier cycle. This work paves the way towards sub-unit-cell gauge flux, enabling future studies on synthetic gauge fields and topological materials.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-022-01200-wDOI Listing

Publication Analysis

Top Keywords

gauge flux
24
gauge fields
12
gauge
10
topological wannier
8
artificial gauge
8
sonic crystal
8
crystal gauge
8
flux insertion
8
insertion single
8
fields topological
8

Similar Publications

Dots and boxes algorithm for Peierls substitution: application to multidomain topological insulators.

J Phys Condens Matter

January 2025

Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70542, Ciudad de México 04510, Mexico.

Magnetic fields can be introduced into discrete models of quantum systems by the Peierls substitution. For tight-binding Hamiltonians, the substitution results in a set of (Peierls) phases that are usually calculated from the magnetic vector potential. As the potential is not unique, a convenient gauge can be chosen to fit the geometry and simplify calculations.

View Article and Find Full Text PDF

The nonintegrable higher spin Kitaev honeycomb model has an exact Z_{2} gauge structure, which exclusively identifies quantum spin liquid in the half-integer spin Kitaev model. But its constraints for the integer-spin Kitaev model are much limited, and even trivially gapped insulators cannot be excluded. The physical implications of exact Z_{2} gauge structure, especially Z_{2} fluxes, in integer-spin models remain largely unexplored.

View Article and Find Full Text PDF

We study how sharp signatures of fractionalization emerge in nonlinear spectroscopy experiments on spin liquids with separated energy scales. Our model is that of dipolar-octupolar rare earth pyrochlore materials, prime candidates for realizing quantum spin ice. This family of three-dimensional quantum spin liquids exhibits fractionalization of spin degrees of freedom into spinons charged under an emergent U(1) gauge field.

View Article and Find Full Text PDF

Vacancies in Generic Kitaev Spin Liquids.

Phys Rev Lett

November 2024

Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

The Kitaev honeycomb model supports gapless and gapped quantum spin liquid phases. Its exact solvability relies on extensively many locally conserved quantities. Any real-world manifestation of these phases would include imperfections in the form of disorder and interactions that break integrability.

View Article and Find Full Text PDF

Spinless topological chirality from Umklapp scattering in twisted 3D structures.

Rep Prog Phys

December 2024

Department of Physics, The University of Hong Kong, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong, 999077, HONG KONG.

Spinless systems exhibit unique topological characteristics compared to spinful ones, stemming from their distinct algebra. Without chiral interactions typically linked to spin, an intriguing yet unexplored interplay between topological and structural chirality may be anticipated. Here we discover spinless topological chiralities solely from structural chiralities that lie in the 3D spatial patterning of structureless units, exemplified using two types of twisted graphite systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!