A sharp contrasting occurrence of iron-rich groundwater in the Pearl River Delta during the past dozen years (2006-2018): The genesis and mitigation effect.

Sci Total Environ

Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China; Haikou Marine Geological Survey Center, China Geological Survey, Haikou 570100, China.

Published: July 2022

Fe-rich (>0.3 mg/L) groundwater is generally present in areas where organic matter-rich fluvial, lacustrine, or marine sedimentary environments occur. The Pearl River Delta (PRD) that marine sediments is common, where a large scale of Fe-rich groundwater was distributed but disappearing in recent decade. This study aims to investigate the change of Fe-rich groundwater in the PRD, and to discuss the genesis controlling Fe-rich groundwater in the PRD during the past dozen years. A total of 399 and 155 groundwater samples were collected and analyzed at 2006 and 2018, respectively. Results showed that Fe-rich groundwater of the PRD was from 19.3% at 2006 dropped to 1.3% at 2018. Fe-rich groundwater in coastal-alluvial aquifers was more than 2 times that in other aquifers at 2006. Both of anthropogenic and geogenic sources were contributed to the widely distribution of Fe-rich groundwater in the PRD at 2006. The infiltration of industrial wastewater and the irrigation of Fe-rich surface water were the major anthropogenic driving forces for the occurrence of Fe-rich groundwater in the PRD at 2006. The reductive dissolution of Fe minerals in aquifer sediments, associated with the degradation of organic matter in marine sediments and the sewage infiltration, was the main driving force for the enrichment of groundwater Fe in coastal-alluvial aquifers at 2006. The intrusion of sewage triggering the reductive dissolution of Fe minerals in terrestrial sediments and the reductive dissolution of Fe minerals in carbon-rich rocks induced by sewage leakages were the major driving forces for the occurrence of Fe-rich groundwater in alluvial-proluvial and fissured aquifers at 2006. All these driving forces were weaker or even not work at 2018 because of the large decrease of untreated wastewater discharge in the PRD during 2006-2018. Therefore, limiting untreated wastewater discharge is the first choice to improve the groundwater quality in urbanized areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.154676DOI Listing

Publication Analysis

Top Keywords

fe-rich groundwater
32
groundwater prd
20
groundwater
13
aquifers 2006
12
driving forces
12
reductive dissolution
12
dissolution minerals
12
fe-rich
10
pearl river
8
river delta
8

Similar Publications

The presence of arsenic in groundwater, and through this in drinking water, has been shown to present a serious risk to public health in many regions of the world. In this study, two iron-rich carbonous adsorbents were compared for the removal of arsenate (As(V)) from groundwater. Biochars (FeO-biochar and FeO-pyrochar) derived from biomass waste were functionalised in two different ways with iron chloride for comparation.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how chromium (Cr) leached from iron-rich tropical laterites affects groundwater and ecosystems, highlighting a lack of effective methods for extracting and analyzing Cr in laterites.* -
  • Researchers optimized a new Cr-specific sequential extraction procedure (SEP) that outperforms existing methods by better isolating and measuring Cr in Fe (oxyhydr)oxide-rich laterites.* -
  • The new SEP showed up to seven times higher recovery of Cr, leading to improved understanding of its environmental impacts in tropical soils.*
View Article and Find Full Text PDF

The uranium inventory in the Boeun aquifer is situated near an artificial reservoir (40-70 m apart) intended to supply water to nearby cities. However, toxic radionuclides can enter the reservoir. To determine the U mobility in the system, we analyzed groundwater and fracture-filling materials (FFMs) for environmental tracers, including microbial signatures, redox-sensitive elements and isotopes.

View Article and Find Full Text PDF

Structure and composition of natural ferrihydrite nano-colloids in anoxic groundwater.

Water Res

June 2023

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA. Electronic address:

Fe-rich mobile colloids play vital yet poorly understood roles in the biogeochemical cycling of Fe in groundwater by influencing organic matter (OM) preservation and fluxes of Fe, OM, and other essential (micro-)nutrients. Yet, few studies have provided molecular detail on the structures and compositions of Fe-rich mobile colloids and factors controlling their persistence in natural groundwater. Here, we provide comprehensive new information on the sizes, molecular structures, and compositions of Fe-rich mobile colloids that accounted for up to 72% of aqueous Fe in anoxic groundwater from a redox-active floodplain.

View Article and Find Full Text PDF

Shallow (<30 m) reducing groundwater commonly contains abundant dissolved arsenic (As) in Bangladesh. We hypothesize that dissolved As in iron (Fe)-rich groundwater discharging to rivers is trapped onto Fe(III)-oxyhydroxides which precipitate in shallow riverbank sediments under the influence of tidal fluctuations. Therefore, the goal of this study is to compare the calculated mass of sediment-bound As that would be sequestered from dissolved groundwater As that discharges through riverbanks of the Meghna River to the observed mass of As trapped within riverbank sediments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!