Background: Previous research has demonstrated that the spleen plays an important role in mesenchymal stem cell (MSC)-mediated alleviation of acute inflammation, as MSC infusion increases the spleen-derived anti-inflammatory cytokine interleukin 10 (IL-10) levels. However, studies on splenic involvement in MSC-induced protection against chronic inflammatory diseases are limited. Obesity is characterized by chronic low-grade inflammation, a key driver of insulin resistance. This study aims to evaluate the effects of MSCs on obesity-related insulin resistance and explore the underlying mechanism, particularly regarding splenic involvement.
Methods: We induced obesity in mice by feeding them high-fat diets for 20 weeks. Human umbilical cord-derived MSCs (UC-MSCs) were systemically infused into the obese mice once per week for 6 weeks. Systemic glucose metabolic homeostasis and insulin sensitivity in epididymal adipose tissue (EAT) were evaluated. Then, we conducted in vivo blockade of IL-10 during UC-MSC infusion by intraperitoneally administrating an IL-10-neutralizing antibody twice per week. We also investigated the therapeutic effects of UC-MSCs on obese mice after removal of the spleen by splenectomy.
Results: UC-MSC infusions improved systemic metabolic homeostasis and alleviated insulin resistance in EAT but elicited no change in weight. Despite rare engraftment of UC-MSCs in EAT, UC-MSC infusions attenuated insulin resistance in EAT by polarizing macrophages into the M2 phenotype, coupled with elevated serum IL-10 levels. In vivo blockade of IL-10 blunted the effects of UC-MSCs on obese mice. Furthermore, UC-MSCs overwhelmingly homed to the spleen, and the ability of UC-MSCs to elevate serum IL-10 levels and alleviate insulin resistance was impaired in the absence of the spleen. Further in vivo and in vitro studies revealed that UC-MSCs promoted the capacity of regulatory T cells (Treg cells) to produce IL-10 in the spleen.
Conclusions: Our results demonstrated that UC-MSCs elevated serum IL-10 levels and subsequently promoted macrophage polarization, leading to alleviation of insulin resistance in EAT. The underlying mechanism was that UC-MSCs improved the capacity of Treg cells to produce IL-10 in the spleen. Our findings indicated that the spleen played a critical role in amplifying MSC-mediated immunomodulatory effects, which may contribute to maximizing MSC efficacy in clinical applications in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935757 | PMC |
http://dx.doi.org/10.1186/s13287-022-02791-6 | DOI Listing |
Diabetes Obes Metab
January 2025
Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China.
Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.
View Article and Find Full Text PDFCureus
December 2024
Plastic Surgery, Shri Guru Ram Rai Institute of Medical & Health Sciences, Dehradun, IND.
Pregnancy issues such as gestational hypertension, preeclampsia, and gestational diabetes mellitus (GDM) are significant contributors to long-term cardiovascular diseases (CVDs) in women. Recent research has proved the impact of exercise on improving cardiovascular outcomes, particularly in women with pregnancy-related disorders. This review explores the outcomes of various exercise interventions on cardiovascular health in pregnant women.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain.
The hypothalamus integrates peripheral signals and modulates food intake and energy expenditure by regulating the metabolic function of peripheral tissues, including the liver and adipose tissue. In a previous study, we demonstrated that s-resistin, an intracellular resistin isoform highly expressed in the hypothalamus and upregulated during aging, is important in the central control of energy homeostasis, affecting mainly the peripheral response to insulin by still unknown mechanisms. Herein, using an intracerebroventricular injection of a specific lentiviral RNAi against s-resistin, we assessed, in the Wistar rat, the effects of central s-resistin downregulation on the expression and phosphorylation levels of intermediates involved in insulin signaling and the inflammatory response in epididymal white adipose tissue (eWAT) and liver.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China.
Reductive stress, characterized by rising level of NADH (nicotinamide adenine dinucleotide) for a status of NADH/NAD ratio elevation, has been reported in obesity and cancer. However, the mechanism and significance of reductive stress remain to be established in obesity. This perspective is prepared to address the issue with new insights published recently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!