Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pain is an unpleasant sensation associated with injury, inflammation, and infection. It has been demonstrated that communication between immune cells and neurons plays a vital role in pain and pain-related diseases (e.g. multiple sclerosis, osteoarthritis, irritable bowel syndrome). Growing data from preclinical and clinical studies have established that the bilateral regulations between peripheral immune cells and nociceptive neurons could be beneficial or detrimental for the development of pain and immune defense. We here review the mechanisms underlying neuroimmune crosstalk between circulating immune cells (e.g. macrophages, T cells, mast cells, neutrophils, monocytes) and nociceptors in the peripheral nervous system and the spinal cord. Deciphering the mechanisms by which neuroimmune interaction integrates neuronal inputs and immune responses helps to understand the pathogenesis of pain-related diseases and develop effective medications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2022.108700 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!