Background: Extracellular histones exert cytotoxic and procoagulant effects which contribute to immunothrombosis in vascular diseases such as sepsis. Heparin has been shown to neutralize the pathologic effects of histones in vitro and in animal models.

Objectives: To compare the effectiveness of unfractionated heparin (UFH), low-molecularweight heparin (LMWH), Vasoflux (lacks anticoagulant activity), and fondaparinux in neutralizing the cytotoxic and procoagulant activities of histones METHODS: Binding affinities between heparin variants and histone subunits were determined by Bio-layer Interferometry. The ability of heparin variants to diminish the cytotoxic and procoagulant effects of histones was studied by treating endothelial cells or monocytic THP-1 cells with histones ± heparin variants.

Results: Unfractionated heparin, LMWH, and Vasoflux bind histone subunits with high affinities (K <1 pM-66.7 nM) whereas fondaparinux exhibited a low affinity (K of 3.06 µM-81.1 mM). UFH, LMWH, and Vasoflux neutralize histone-mediated cytotoxicity as well as monocytic procoagulant activity (as assessed by cell surface tissue factor and phosphatidylserine). In contrast, fondaparinux has no effect on these activities. All four heparin variants reverse histone-mediated impairment of APC generation in a dose-dependent manner.

Conclusions: The ability of heparin to neutralize the cytotoxic and procoagulant effects of histones require heparin fragments >1.7 kDa and is independent of the antithrombin-binding pentasaccharide. In contrast, the ability of heparin to neutralize histone-mediated impairment of APC generation is independent of size and anticoagulant activity. These findings suggest that heparin variants may have differential therapeutic potential in vascular diseases associated with elevated levels of histones.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jth.15706DOI Listing

Publication Analysis

Top Keywords

heparin variants
16
cytotoxic procoagulant
12
heparin
10
procoagulant effects
8
vascular diseases
8
heparin neutralize
8
effects histones
8
unfractionated heparin
8
heparin lmwh
8
lmwh vasoflux
8

Similar Publications

Background: Homozygosity for the rare APOE3-Christchurch (APOE3Ch) variant, encoding for apoE3-R136S (apoE3-Ch), was linked to resistance against an aggressive form of familial Alzheimer's disease (AD). Carrying two copies of APOE3Ch was sufficient to delay autosomal AD onset by 30 years. This remarkable protective effect makes it a strong candidate for uncovering new therapies against AD.

View Article and Find Full Text PDF

Evolution of SARS-CoV-2 spike trimers towards optimized heparan sulfate cross-linking and inter-chain mobility.

Sci Rep

December 2024

Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany.

The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.

View Article and Find Full Text PDF

Structural analysis of the stable form of fibroblast growth factor 2 - FGF2-STAB.

J Struct Biol X

December 2024

Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.

Fibroblast growth factor 2 (FGF2) is a signaling protein that plays a significant role in tissue development and repair. FGF2 binds to fibroblast growth factor receptors (FGFRs) alongside its co-factor heparin, which protects FGF2 from degradation. The binding between FGF2 and FGFRs induces intracellular signaling pathways such as RAS-MAPK, PI3K-AKT, and STAT.

View Article and Find Full Text PDF

Albumin-based nanoparticles (ABNPs) represent promising drug carriers in nanomedicine due to their versatility and biocompatibility, but optimizing their effectiveness in drug delivery requires understanding their interactions with and uptake by cells. Notably, albumin interacts with the cellular glycocalyx, a phenomenon particularly studied in endothelial cells. This observation suggests that the glycocalyx could modulate ABNP uptake and therapeutic efficacy, although this possibility remains unrecognized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!