Correction to: Quantitative analysis of choroidal blood flow parameters in optical coherence tomography and angiography in central serous chorioretinopathy.

Graefes Arch Clin Exp Ophthalmol

Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, 222 Banpo‑daero, Seocho‑gu, Seoul, 06591, Republic of Korea.

Published: July 2022

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00417-022-05633-6DOI Listing

Publication Analysis

Top Keywords

correction quantitative
4
quantitative analysis
4
analysis choroidal
4
choroidal blood
4
blood flow
4
flow parameters
4
parameters optical
4
optical coherence
4
coherence tomography
4
tomography angiography
4

Similar Publications

Congenital platelet disorders are rare and targeted treatment is usually not possible. Inherited platelet function disorders (iPFDs) can affect surface receptors and multiple platelet responses such as defects of platelet granules, signal transduction, and procoagulant activity. If iPFDs are also associated with a reduced platelet count (thrombocytopenia), it is not uncommon to be misdiagnosed as immune thrombocytopenia.

View Article and Find Full Text PDF

A dual-domain network with division residual connection and feature fusion for CBCT scatter correction.

Phys Med Biol

January 2025

School of Biomedical Engineering, ShanghaiTech University, No. 1 Zhongke Road, Pudong New Area, Shanghai, Shanghai, 201210, CHINA.

Objective: This study aims to propose a dual-domain network that not only reduces scatter artifacts but also retains structure details in CBCT.

Approach: The proposed network comprises a projection-domain sub-network and an image-domain sub-network. The projection-domain sub-network utilizes a division residual network to amplify the difference between scatter signals and imaging signals, facilitating the learning of scatter signals.

View Article and Find Full Text PDF

Correlation among blastocoel fluid DNA level, apoptotic genes expression and preimplantation aneuploidy.

Reprod Fertil

January 2025

M Bazrgar, Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran., Tehran, Iran (the Islamic Republic of).

It is believed that aneuploid embryos release cell-free DNA (cfDNA) into the blastocyst cavity during the self-correction process through the apoptotic mechanism. This study aimed to develop less invasive methods for predicting ploidy status by investigating how ploidy status affects blastocoel fluid DNA (BF-DNA) levels and apoptotic gene expression as indicators of embryo viability. Human blastocysts were classified into three groups; Survivable Embryo (SE), Fatal Single and double Aneuploidy (FSDA), and Multiple Aneuploidy (MA) using array comparative genomic hybridization (array-CGH) by trophectoderm (TE) biopsy.

View Article and Find Full Text PDF

Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment.

View Article and Find Full Text PDF

New developments in the field of chemical graph theory have made it easier to comprehend how chemical structures relate to the graphs that underlie them on a more profound level using the ideas of classical graph theory. Chemical graphs can be effectively probed with the help of quantitative structure-property relationship (QSPR) analysis. In order to statistically correlate physical attributes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!