ATF4-mediated microRNA-145/HDAC4/p53 axis affects resistance of colorectal cancer cells to 5-fluorouracil by regulating autophagy.

Cancer Chemother Pharmacol

Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China.

Published: May 2022

Background: The impact of activating transcription factor 4 (ATF4), differentially expressed in colorectal cancer (CRC), on 5-Fluorouracil (5-FU) chemoresistance has not been fully explained. The purpose of this study is to evaluate the clinical significance of ATF4-mediated microRNA-145 (miR-145)/histone deacetylase 4 (HDAC4)/p53 axis in CRC.

Methods: Initially, the expression of ATF4, miR-145, HDAC4, and p53 in CRC tissues and cells was quantified by RT-qPCR and immunoblotting. Next, luciferase activity and chromatin immunoprecipitation assays were performed to verify the binding affinity among miR-145, ATF4, and HDAC4. Moreover, proliferation, clone formation, and apoptosis in CRC cells treated with 5-FU were assessed after gain- or loss-of-function of ATF4, miR-145, and/or HDAC4. Furthermore, the tumorigenicity and chemoresistance of CRC cells in mice were assayed for validating the in vitro findings.

Results: ATF4 and HDAC4 were highly expressed, while miR-145 and p53 were poorly expressed in CRC tissues and cells. miR-145 targeted and negatively regulated HDAC4 to activate p53, and miR-145 expression was suppressed by ATF4. Of note, ATF4 facilitated cell proliferation and clone formation ability and repressed apoptosis to promote autophagy and chemoresistance of CRC cells by regulating the miR-145/HDAC4/p53 axis. In vivo experiment elucidated that ATF4-mediated miR-145/HDAC4/p53 axis enhanced tumorigenesis and resistance of CRC cells to 5-FU.

Conclusion: In conclusion, ATF4-mediated miR-145 inhibition accelerated autophagy of CRC cells and boosted their resistance to 5-FU via the HDAC4/p53 axis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-021-04393-0DOI Listing

Publication Analysis

Top Keywords

crc cells
20
colorectal cancer
8
cells
8
crc
8
hdac4/p53 axis
8
atf4 mir-145
8
crc tissues
8
tissues cells
8
atf4 hdac4
8
proliferation clone
8

Similar Publications

The transcriptomic classification of primary colorectal cancer (CRC) into distinct consensus molecular subtypes (CMSs) is a well-described strategy for patient stratification. However, the molecular nature of CRC metastases remains poorly investigated. To this end, this study aimed to identify and compare organotropic CMS frequencies in CRC liver and brain metastases.

View Article and Find Full Text PDF

The pro-tumor effects of mast cell (MC) in the tumor microenvironment (TME) are becoming increasingly clear. Recently, MC were shown to contribute to tumor malignancy by supporting the migration of tumor-associated macrophages (TAMs), suggesting a relationship with tumor immunity. In the current study, we aimed to examine the correlation between MC infiltration and neoadjuvant chemoradiotherapy (nCRT) response for locally advanced rectal cancer (LARC).

View Article and Find Full Text PDF

A constitutive interferon-high immunophenotype defines response to immunotherapy in colorectal cancer.

Cancer Cell

January 2025

Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK. Electronic address:

Fewer than 50% of metastatic deficient mismatch repair (dMMR) colorectal cancer (CRC) patients respond to immune checkpoint inhibition (ICI). Identifying and expanding this patient population remains a pressing clinical need. Here, we report that an interferon-high immunophenotype locally enriched in cytotoxic lymphocytes and antigen-presenting macrophages is required for response.

View Article and Find Full Text PDF

Targeting FABP4/UCP2 axis to overcome cetuximab resistance in obesity-driven CRC with drug-tolerant persister cells.

Transl Oncol

January 2025

Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan. Electronic address:

Colorectal cancer (CRC) is closely linked to obesity, a condition that significantly impacts tumor progression and therapeutic resistance. Although cetuximab, an EGFR-targeting monoclonal antibody, is a cornerstone in metastatic CRC treatment, resistance often emerges, leading to poor outcomes. This study investigated the role of drug-tolerant persister (DTP) cells and their metabolic interactions within the tumor microenvironment (TME) in cetuximab resistance.

View Article and Find Full Text PDF

Anti-colorectal cancer actions of Glycyrrhiza uralensis Fisch. and its underlying mechanism via HPLC integration and network pharmacological approaches.

Phytomedicine

January 2025

College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain. Electronic address:

Background: The therapeutic and prognostic outcomes for colorectal cancer (CRC) remain unsatisfactory. Among multiple reported bioactive functionalities of Glycyrrhiza uralensis Fisch. one vital recently reported activity is its therapeutic role against numerous cancers but limited information is available related to its underlying key mechanisms and therapeutically active ingredients, especially against CRC treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!