A lot of evidence has shown the importance of stimulating cell mechanically during bone repair. In this study, we modeled the challenging fracture healing of a large bone defect in tibial diaphysis. To fill the fracture gap, we considered the implantation of a porous osteoconductive biomaterial made of poly-lactic acid wrapped by a hydrogel membrane mimicking osteogenic properties of the periosteum. We identified the optimal loading case that best promotes the formation and differentiation into bone tissue. Our results support the idea that a patient's rehabilitation program should be adapted to reproduce optimal mechanical stimulations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2022.2052051DOI Listing

Publication Analysis

Top Keywords

silico modelling
4
modelling long
4
bone
4
long bone
4
bone healing
4
healing involving
4
involving osteoconduction
4
osteoconduction mechanical
4
mechanical stimulation
4
stimulation lot
4

Similar Publications

Metabolic changes that allow artemisinin-resistant parasites to tolerate oxidative stress.

Front Parasitol

September 2024

Centro de Cálculo Científico de la Universidad de Los Andes (CeCalCULA), Universidad de Los Andes (ULA), Mérida, Venezuela.

Artemisinin-based treatments (ACTs) are the first therapy currently used to treat malaria produced by . However, in recent years, increasing evidence shows that some strains of are less susceptible to ACT in the Southeast Asian region. A data reanalysis of several omics approaches currently available about parasites of that have some degree of resistance to ACT was carried out.

View Article and Find Full Text PDF

Introduction: In response to continued public health emergency of antimicrobial resistance (AMR), a significant key strategy is the discovery of novel mycobacterial efflux-pump inhibitors (EPIs) as potential adjuvants in combination drug therapy. Interest in identifying new chemotypes which could potentially synergize with the existing antibiotics and can be deployed as part of a combination therapy. This strategy could delay the emergence of resistance to existing antibiotics and increase their efficacy against resistant strains of mycobacterial species.

View Article and Find Full Text PDF

HUVECs-derived exosomes increase neovascularization and decrease limb necrosis in hindlimb ischemia.

Narra J

December 2024

Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Chronic limb-threatening ischemia (CLTI) is the most severe manifestation of peripheral arterial disease (PAD) and imposes a significantly high burden due to its high risk of mortality and amputation. Revascularization is the first-line treatment for CLTI; however, the amputation rate remains high, and approximately one-third of patients are not eligible for this treatment. Therefore, there is an urgent need for more effective therapeutic strategies.

View Article and Find Full Text PDF

Pancreatic cell damage in diabetes mellitus is closely linked to inflammation and apoptosis. This study aimed to investigate the protective effects of phloroglucinol on pancreatic cells in a streptozotocin-induced diabetic model by assessing its anti- inflammatory and anti-apoptotic mechanisms. Phloroglucinol ligand and the structures of Bax, Bcl-2, and caspase-3 proteins were sourced from the PubChem database.

View Article and Find Full Text PDF

Congenital heart disease (CHD) represents nearly one-third of congenital birth defects annually, with ventricular septal defect (VSD) being the most common type. The aim of this study was to explore the role of specific GATA binding protein 6 gene () mutations as a potential etiological factor in the development of VSD through an in silico approach. Data were collected from the human gene databases: DisGeNET and GeneCards, with protein-protein interaction networks constructed via STRING and Cytoscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!