Terahertz vibrations are sensitive reporters of the structure and interactions of proteins. Ligand binding alters the nature and distribution of these collective vibrations. The ligand-induced changes in the terahertz protein vibrations contribute to the binding entropy and to the overall thermodynamic stability of the resultant protein-ligand complexes. Here, we have examined the response of the low-frequency (below 6 terahertz) collective vibrations of the calcium-loaded calmodulin (CaM) to binding to five different ligands, both in the presence and absence of water, using normal-mode analysis and molecular dynamics simulations. A comparison of the vibrational spectra of hydrated and dry systems reveals that protein-solvent interactions stiffen the terahertz protein vibrations and that these solvent-coupled collective vibrations contribute significantly to the hydration-sensitive variation in the vibrational entropy of CaM. In the absence of water, the low-frequency vibrations of CaM are stiffened by ligand binding. On the contrary, the number and the cumulative vibrational entropy of low-frequency vibrational modes (ω < 200 cm) of the hydrated CaM are increased noticeably after binding to the peptides, indicating binding-induced softening of collective vibrations of the protein. Although the calculated and experimental binding affinities of the chosen complexes correlated reasonably well, no systematic correlation was observed between the protein vibrational entropy and the binding affinity. The results underscored the importance of the interplay of protein-ligand and solvent interactions in modulating the low-frequency vibrations of proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.1c01344 | DOI Listing |
Soft Matter
January 2025
Physics Department, Wesleyan University, Middletown, CT 06459, USA.
We examine the collective motion in computational models of a two-dimensional dusty plasma crystal and a charged colloidal suspension as they approach their respective melting transitions. To unambiguously identify rearrangement events in the crystal, we map the trajectory of configurations from an equilibrium molecular dynamics simulation to the corresponding sequence of configurations of local potential energy minima ("inherent structures"). This inherent structure (IS) trajectory eliminates the ambiguity that arises from localized vibrational motion.
View Article and Find Full Text PDFAmino Acids
January 2025
Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia.
Four aliphatic amino acids-α-aminobutyric acid (AABA), β-aminobutyric acid (BABA), α-aminoisobutyric acid (AAIBA) and β-aminoisobutyric acid (BAIBA) were investigated in water as a solvent by two quantum chemical methods. B3LYP hybrid version of DFT was used for geometry optimization and a full vibrational analysis of neutral molecules, their cations and anions in the canonical and zwitterionic forms (6 forms for each species). Ab initio DLPNO-CCSD(T) method was applied in the geometry pre-optimized by B3LYP.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Quantum Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.
The two key parameters extracted from Mössbauer spectroscopy, isomer shift and quadrupole splitting, have well-known temperature dependencies. While the behavior of the values following a temperature change has long been known, its microscopic origins are less clear. For quantum chemical calculations - formally representing the situation at 0 K - significant discrepancies with the experiment can arise, especially at elevated temperatures.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, J. D. Block, Sec.III, Salt Lake, Kolkata, West Bengal 700 098, India.
We investigated the temperature dependence of the intermolecular dynamics, including intermolecular vibrations and collective orientational relaxation, of one of the most typical deep eutectic solvents, reline, using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), subpicosecond optical Kerr effect spectroscopy (ps-OKES), and molecular dynamics (MD) simulations. According to fs-RIKES results, the temperature-dependent intermolecular vibrational band peak at ∼90 cm exhibited a redshift with increasing temperature. The density-of-state (DOS) spectrum of reline by MD simulations reproduced this fs-RIKES spectral feature.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura, 35111, Egypt.
The research study objective seeks to improve the efficiency of wind turbines using state-of-the-art techniques in the domain of ML, making wind energy the key player in fashioning a favorable future. Wind Turbine Health Monitoring (WTHM) is typically achieved through either vibration analysis or by using Supervisory Control and Data Acquisition (SCADA) data of wind turbines, wherein conventional fault pattern identification is a time-consuming, guesswork process. This work proposed an intelligent automated approach to early fault detection through the implementation of the HARO (Huber Adam Regression Optimizer) model, which combines Transformer networks with Lasso Regression and the Adam optimizer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!