Harnessing DNA as a Designable Scaffold for Asymmetric Catalysis: Recent Advances and Future Perspectives.

Chem Rec

Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan.

Published: June 2022

Since the first report of DNAzyme by in vitro selection in 1994, catalytic DNA has investigated extensively, and their application has expanded continually in virtue of rapid advances in molecular biology and biotechnology. Nowadays, DNA is in the second prime time by way of DNA-based hybrid catalysts and DNA metalloenzymes in which helical chirality of DNA serves to asymmetric catalysis. DNA-based hybrid catalysts are attractive system to respond the demand of the times to pursuit green and sustainable society beyond traditional catalytic systems that value reaction efficiency. Herein, we highlight the recent advances and perspective of DNA-based hybrid catalysts with various aspects of DNA as a versatile scaffold for asymmetric synthesis. We hope that scientists in a variety of fields will be encouraged to join and promote remarkable evolution of this interesting research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.202100333DOI Listing

Publication Analysis

Top Keywords

dna-based hybrid
12
hybrid catalysts
12
scaffold asymmetric
8
asymmetric catalysis
8
dna
5
harnessing dna
4
dna designable
4
designable scaffold
4
catalysis advances
4
advances future
4

Similar Publications

To investigate the expression pattern of pan-TRK protein in colorectal cancers with NTRK gene fusion and mismatch repair deficient (dMMR) and to analyze its molecular pathological characteristics. A total of 117 dMMR colorectal cancers diagnosed in the Department of Pathology of Henan Provincial People's Hospital, Zhengzhou, China from 2020 to 2023 were collected. Immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) and DNA/RNA-based next-generation sequencing (NGS) were used to detect pan-TRK protein expression and fusion partner genes in tumors, and to further explore the correlation between pan-TRK staining patterns and partner genes.

View Article and Find Full Text PDF

Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

Nat Commun

January 2025

School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.

Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

View Article and Find Full Text PDF

Background: Anaplastic lymphoma kinase () rearrangement, the most common oncogenic rearrangement in lung adenocarcinoma, occurs in approximately 5% of non-small cell lung cancer (NSCLC) patients. gene is the most common partner of rearrangement, and distinct EML4-ALK fusions differ in their responsiveness to ALK tyrosine kinase inhibitors. However, the concurrence of two rearrangements in one patient and whose response to ALK-TKIs have rarely been reported so far.

View Article and Find Full Text PDF

Raman spectroscopy (RS) has emerged as a novel optical imaging modality by identifying molecular species through their bond vibrations, offering high specificity and sensitivity in molecule detection. However, its application in intracellular molecular probing has been limited due to challenges in combining vibrational tags with functional probes. DNA nanostructures, known for their high programmability, have been instrumental in fields like biomedicine and nanofabrication.

View Article and Find Full Text PDF

Biomolecular condensates (BCs) are crucial membraneless organelles formed through the process of liquid-liquid phase separation (LLPS) involving proteins and nucleic acids. These LLPS processes are tightly linked with essential cellular activities. Stress granules (SGs), functioning as cytoplasmic BCs, play indispensable roles in maintaining cellular homeostasis and are implicated in diseases like cancers and neurodegenerative disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!