Protein-energy malnutrition is a global challenge that demands urgent attention, especially with the increasing population growth and unmatched food security plans. One strategy is to expand the list of protein sources, such as neglected and underutilized crops, with high protein content. A good number of plant proteins, in addition to their nutritional benefits, exert therapeutic properties as seen in seeds derived from legumes and emerging sources such as hemp. In this review, the transepithelial transport, functional, and biological properties of hempseed proteins (HSPs) and peptides were discussed. The review also described the potential safety issues of incorporating hempseeds in food products. Due to the multitargeted effects of hempseed-derived proteins and their peptides against many chronic diseases, and their functional properties, current knowledge shows that hempseed has tremendous potential for functional food and nutraceutical applications. PRACTICAL APPLICATIONS: The alarming rate of malnutrition and the attendant health consequences demand that underexploited nutrient-rich crops should be incorporated as part of our common dietary sources. Among these crops, hempseed is gaining attention as an emerging source of proteins and peptides with promising potential in prevention and management of chronic diseases such as diabetes, hypertension, cancer, hypercholesterolemia, obesity, and diseases whose etiology involves oxidative stress and inflammation. Fortunately, a growing body of research evidence is demonstrating that hempseed is a reservoir of proteins and peptides with nutraceutical potentials for curbing life-threatening diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.14127DOI Listing

Publication Analysis

Top Keywords

proteins peptides
16
hempseed-derived proteins
8
chronic diseases
8
proteins
6
peptides
5
review techno-functional
4
techno-functional biological
4
biological health-promoting
4
properties
4
health-promoting properties
4

Similar Publications

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Effect of heart rate on B-type natriuretic peptide in sinus rhythm.

Sci Rep

December 2024

Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.

B-type natriuretic peptide (BNP) levels accurately reflect the degree of cardiac overload in heart failure. Considering cardiac morphology and intracardiac pressure, including the left ventricular end-systolic volume index (LVESVI) and left ventricular end-diastolic volume index (LVEDVI), is essential for cardiac overload assessment. These indexes influence plasma BNP levels, and high heart rate is likely associated with cardiac morphology.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!